
Charon: A Framework for Microservice
Overload Control

Jiali Xing, Henri Maxime Demoulin, Konstantinos Kallas, Benjamin C. Lee
University of Pennsylvania

{xjiali,maxdml,kallas,leebcc}@seas.upenn.edu

ABSTRACT
Overload control is an important feature of modern cloud
applications. As these applications grow increasingly com-
plex, designing efficient overload control schemes at scale is
tedious. In this paper we argue part of the challenge is a lack
of first principles mechanisms one can use to design scalable
and verifiable policies.

We present CHARON, a market-based scheme for large
scale service graphs. Unsurprisingly, CHARON relies on to-
kens to negotiate the acquisition of compute resources. How-
ever, unlike existing receiver-driven systems, CHARON de-
couples the mechanisms used to generate and value tokens
and proposes efficient price propagation mechanisms. We mo-
tivate CHARON with a set of representative system conditions
that existing frameworks cannot handle well, detail an exam-
ple policy one can build using the proposed mechanisms, and
discuss open research challenges our framework exposes.

ACM Reference Format:
Jiali Xing, Henri Maxime Demoulin, Konstantinos Kallas, Benjamin
C. Lee. 2021. Charon: A Framework for Microservice Overload
Control. In Proceedings of The 20th ACM Workshop on Hot Topics
in Networks (HotNets’21). ACM, New York, NY, USA, 8 pages.
https://doi.org/10.475/123_4

1 INTRODUCTION
Modern cloud applications are increasingly complex. Providers
of Internet services, such as Twitter, Netflix, and Amazon,
deploy complex service graphs made of hundreds of microser-
vices [4, 8, 9]. Detecting, diagnosing, and mitigating perfor-
mance losses for these applications is difficult. Detection is
delayed because losses become apparent only after the conse-
quences of a slow microservice propagate through the service
graph [11, 17]. Diagnosis is challenging when application

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
HotNets’21, November 10-12, 2021, Virtual Event, UK
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7020-2.
https://doi.org/10.475/123_4

latency is affected by several dependent microservices. Deci-
sion making is complicated as the system must control load
and allocate resources for each microservice.

Overload is a particularly challenging source of perfor-
mance loss in service graphs. Load variations and bursts of
traffic often cause an application’s computational demands
to exceed allocated system resources, causing requests and
tasks to linger in queues and, eventually, violate service level
objectives (SLOs). As a result, overload control is crucial for
application performance. Control frameworks usually prop-
agate performance signals between pairs of senders and re-
ceivers. These signals trigger actions, such as rate limiting
at the senders or dropping requests at the receivers, to man-
age application performance and system utilization. Despite
recent advances, however, designing an effective set of sig-
nals and actions for the unique requirements of microservice
graphs remains difficult. An effective overload control scheme
should satisfy the following desiderata.

Topology Awareness. Each microservice may act with a
local view of system conditions, but must also anticipate
broader implications for the application and system. Actions
taken to mitigate overload should account for a request’s com-
putational path through the microservice graph. Topology
awareness allows overload control to pursue broader objec-
tives such as application fairness and resource efficiency.

Request Awareness. Applications may serve diverse queries
of varying complexity and computational intensity. Data cen-
ter workloads often follow a heavy-tailed distribution where
infrequent, complex queries require an order of magnitude
more time or resources than common, simple queries [3, 10,
19, 20]. Request awareness allows to differentiate between
load classes and their computational demands.

Objective Flexibility. Data center operators may optimize
diverse objectives for applications and the system. Control
policies may need to balance fairness, goodput, and efficiency.
Objective flexibility requires overload control to define mech-
anisms (i.e., signals, actions) expressive enough to support
varied policies.

Finally, given the distributed nature of service graphs, min-
imizing communication costs is particularly important. Per-
formance signals must flow quickly through the graph and
mitigation actions must be timely to handle bursty arrivals.

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

HotNets’21, November 10-12, 2021, Virtual Event, UK J. Xing, H. M. Demoulin, K. Kallas, B. C. Lee

The trend toward microsecond-scale computation only exac-
erbates these requirements [12, 16, 22, 29].

We pursue these desiderata with CHARON, a scalable frame-
work that controls overload for complex service graphs. CHARON
integrates market primitives — tokens and price tables — to
determine how an upstream microservice (sender) consumes
resources of a downstream microservice (receiver).

CHARON employs tokens that are used as currency when a
client (sender) requests a computation from a microservice
(receiver). Prior approaches also use tokens and draw inspira-
tion from network flow control [6, 24], requiring receivers to
generate tokens based on system conditions and to communi-
cate those tokens to senders as a means of acquiring access
to compute resources. In contrast, CHARON decouples token
generation and valuation, shifting the responsibility for to-
ken generation from receivers to senders. This eliminates the
network RTT from token generation and ensures generation
proceeds smoothly even when services are overloaded. This
also decouples mechanism and policy as senders can generate
tokens at rates determined by a customizable policy.

CHARON employs price tables, which allow microservices
to determine how many tokens to spend. Each microservice
updates its prices based on the current policy and other dy-
namic system conditions. Prices are propagated across the
service graph alongside responses using an application-level
protocol, enabling topology-aware policies that scale to com-
plex, multi-layer applications. The cost of entry-level end-
points are similarly propagated and advertised to clients. With
tokens and prices, CHARON creates a market for microser-
vice computation. By varying policies for tokens generation
and price updates, operators can tailor overload control for
application needs.

2 BACKGROUND
Overload control relies on rate limiting senders and active
queue management (AQM). Both mechanisms have seen
widespread use to avoid congestion in networks; for example,
see Jacobson’s CoDel [26] and protocols such as RCP [13, 34].
At the application level, SEDA [32] and Gatekeeper [14]
adaptively control overloads with request-aware AQM, which
drops only the requests responsible for overload, and rate
limiting senders with token bucket algorithms [28]. In today’s
microservice architectures, applications rate limit with circuit
breakers [30] and traffic shapers [25].

Overload control for microservices presents unique chal-
lenges. Assessing load between sender-receiver pairs is dif-
ficult as the number of microservices scales. Clients issuing
requests may suffer from limited network visibility and inac-
curate rate limiting, which risks RPC incast [5]. When many
clients issue requests simultaneously, overloaded queues may

drop requests and cause goodput to collapse. In addition, drop-
ping requests is expensive and create overheads comparable
to processing times when services compute in microsecond
timescales [12, 16, 22, 29]. As a result, client goodput be-
comes more sensitive to inaccurate rate limiting. The risks of
dropping requests and wasting computation in the execution
path increases with the number of services on that path.

Addressing these issues, recent work proposes receiver-
driven overload control at the network [24] and application
levels [6]. With these techniques, receivers manage their own
utilization by deciding the rate at which senders can request
service and consume resources. Both techniques use a basic
notion of currency. Homa grants senders the right to issue a
certain number of bytes, prioritizing short RPCs. Breakwa-
ter grants senders tokens and requires one token for every
request sent, adjusting the number of available tokens based
on receivers’ load.

These recent works draw inspiration from strategies in
network flow control, but do not fully address the complex
interactions between multiple layers or tiers of a service graph.
DAGOR [35] proposes overload control for multiple layers
of a service graph by enforcing performance objectives and
business priorities between pairs of senders and receivers.
However, its rate limiting scheme is hard-coded for each pair
of services. It does not consider load on dependent services
that are not immediate neighbors, nor does it consider rate
limiting end-users.

Finally, no existing approach supports diverse SLOs. Appli-
cations may differ in required performance and tolerable trade-
offs between response time and goodput. Fairness between
classes of computation may be important for applications that
serve third-party users. Efficiency and hardware utilization
may be important for applications that serve first-party users.

3 MOTIVATION
We now present our system model and CHARON’s application
targets. We then present scenarios showcasing how topology
awareness, objective flexibility, and request awareness are
important for an effective overload control scheme.

3.1 System Model
We consider applications represented as a Directed Acyclic
Graph (DAG) describing microservices (nodes) and their
dependencies (edges). Clients issue requests, which enter
through the graph’s source nodes and follow varied execu-
tion paths. Upon receiving a request for computation, each
node may issue one or more sub-requests, creating chains and
fanout patterns. A node may require all downstream nodes
to serve their sub-requests before replying to its upstream
node. We assume that given a request type, each node knows
precisely and deterministically the set of downstream nodes

Charon: A Framework for Microservice Overload Control HotNets’21, November 10-12, 2021, Virtual Event, UK

A CB

B

E

C

A

D

Figure 1: Overload scenarios in (a) microser-
vice chain and (b) where two execution paths
contribute unevenly.

Client

A

O
ve

rlo
ad

ha

nd
le

r

Token
generation

Controller

Price
table

B

O
ve

rlo
ad

ha

nd
le

r

Controller

Price
table

1
2

4

3

Figure 2: CHARON design. Clients use a generation module to peri-
odically generate tokens. Application services maintain a price table
used by an overload handler to perform admission control. A local
controller set with the desired policy configures these modules.

that will next process the request. We also assume each node
implements a First Come, First Serve (FCFS) request sched-
ulers. However, the choice of scheduler is orthogonal because
CHARON’s tokens are used only to determine admissions and
not scheduling priorities.

The system is evaluated from two perspectives. From the
client’s perspective, requests’ performance is evaluated against
SLOs defining the conditions under which computation is use-
ful — for example, 99.9% of requests should complete within
10ms. From the operator’s perspective, system dynamics are
evaluated against utilization, efficiency, and fairness metrics.
Utilization measures resource usage (e.g., throughput). Effi-
ciency examines whether usage translates into useful work
(e.g., goodput). Finally, fairness determines whether resource
allocations and service rates align with applications’ relative
importance (e.g., reservations, entitlements, priorities).

3.2 Microservice Characteristics
Long request paths. Long paths in the application graph
delay the propagation of performance signals, harming re-
sponsiveness for applications with bursty requests. For ex-
ample, Figure 1(a) presents an application that consists of
three microservices arranged in a chain. Suppose leaf node
C becomes overloaded. Overload control schemes that man-
age sender/receiver pairs must first rate limit B, which then
accumulates requests in its queue and eventually triggers rate
limiting for A. In contrast, topology-aware overload control
would directly signal the path’s entry point to rate limit the
end-users and reach its management objective more quickly.

Heterogeneous request paths. Heterogeneous execution
paths through the graph of microservices motivate objective-
flexible mechanisms that can support diverse policies. For
example, Figure 1(b) presents an application with two inde-
pendent paths both requesting service from E. Suppose C’s
requests induce overload at E. In this setting, overload control
schemes encounter a trade-off between efficiency and fairness.
For efficiency, dropping requests from the short path via D

avoids wasting the work completed earlier in the long path
via C. For fairness, requests might need to be dropped and
served at the same rate.

Heterogeneous requests. Data center workloads are often
heavy-tailed and characterized by rare, expensive requests
intermingled with many, simple ones. Such heterogeneous
requests motivate overload control mechanisms that can of-
fer differentiated service rates. Consider Facebook’s USR
pool [3] where requests are 99.8% GETs and 0.2% DELETEs.
GET service times are much shorter than DELETE — some-
times orders of magnitude shorter [27]. If workers are busy
processing DELETEs and receive a burst of GETs, the lat-
ter will be queued and, under simplistic overload control
schemes, dropped. In contrast, a request aware system can
price DELETE requests higher than GETs. Differentiated
prices will more effectively rate limit requests, preventing
overload and dropped requests before the requests queue.

Fanout request paths. We now discuss an example show-
casing the need for both topology and request awareness.
Consider an application for movie ratings that consists of
three services: a frontend service A and two backend services
B andC serving user timelines and movie profiles respectively.
A provides three endpoints, get-user-timeline that loads the
timeline of a specific user by requesting B, get-movie-profile
that loads the profile of a specific movie by requesting C,
and finally frontpage that combines several movie profiles
and user-timelines by requesting both B and C. If C is the
only overloaded service, the control policy should not rate-
limit get-user-timeline requests at the frontend. Further, in
cases where both B and C are overloaded, the control policy
needs topology and request awareness to drop sub-requests be-
longing to the same user’s request, minimizing wasted work,
increasing goodput, and optimizing user experience.

HotNets’21, November 10-12, 2021, Virtual Event, UK J. Xing, H. M. Demoulin, K. Kallas, B. C. Lee

4 CHARON
Figure 2 presents CHARON’s overall design. 1 Clients are
extended with a token generation module that can be config-
ured for the policy at hand. 2 Application microservices
are extended with an overload handler responsible for ad-
mission control. 3 Using a price table, the overload han-

dler credits incoming requests while a 4 controller updates
prices based on signals such as queueing delay and local re-
source utilization, and configures the overload handler based
on the policy in effect. CHARON’s components extend exist-
ing RPC libraries, such as Thrift [2] and gRPC [7], and use an
application-layer protocol to convey price tables and tokens.

Note that only end-users are responsible for generating
tokens, allowing the system to control arrival rates without
explicitly granting tokens to clients and reducing CHARON’s
protocol overheads. Responses piggy-back relevant price ta-
bles entries to clients such that, after the first message, clients
can estimate the number of tokens required to request service
from an application endpoint.

4.1 Mechanisms
Token Generation. Clients generate tokens. To send a re-
quest, a client first checks the price table to determine whether
it holds a sufficient number of tokens. If so, the client accord-
ingly decrements its token holdings. Generating tokens at
the client has two significant advantages. First, servers need
not consume bandwidth granting tokens to clients and clients
need not wait for grants to request the application. Second, the
system is flexible and can pursue varied objectives. The over-
load control policy determines the rate at which tokens are
generated and rates can be configured relative to other clients
to explore trade-offs between utilization, efficiency, and fair-
ness. Third, the system enables dynamic decision making and
flow control. The overload control policy might allow clients
to spend more tokens for prioritized service, especially during
periods of high load. Dynamic spending and pricing decisions
may lead to more efficient allocation of system resources.

Price Tables. Each application endpoint is associated with
a price, quantified in terms of tokens, for processing and
service. The price for a request is affected by prices for all
of the sub-requests made to various microservices along the
execution path. Prices are dynamic, reflecting congestion
and load levels at the microservice. Price updates propagate
through the microservice graph, piggybacked on responses,
so that clients are aware of the latest prices.

Price tables, when coupled with a token mechanism, im-
plement rate limiting. For example, when clients double their
request rates and cause overload, microservices can respond
by doubling prices such that clients must throttle their request
rate. CHARON relies on differentiated prices to implement

request-aware overload control. Prices may depend on request
type, which in turn dictates priority, execution path through
the application, processing time, etc.

Token Usage. A microservice’s overload handler enqueues
a request if its accompanying tokens are sufficient given the
table’s posted price. Otherwise, the handler can drop the re-
quest and take additional action. One such action might be
informing the sender that the request was dropped due to
insufficient tokens. Another action might be to share the latest
price table.

The overload handler may take one of several approaches to
process a used token. One approach consumes part of the ac-
companying tokens based on its price for service and forwards
the remaining tokens for sub-requests to downstream mi-
croservices. Another approach à la DAGOR examines queued
requests’ token holding to determine their relative priority,
no tokens are consumed and all tokens are forwarded for
sub-requests so that downstream microservices can similarly
assess priority.

Controller Communication. CHARON controllers can com-
municate with each other out-of-band for fast information
propagation. For example, when a microservice is overloaded,
its controller can either update prices locally at the upstream
microservice or directly at the source that issues application
requests. In contrast, existing systems that rely only on pair-
wise sender/receiver protocols suffer propagation delays that
are proportional to the length of the execution path (c.f., Sec-
tion 3). Out-of-band communication can be selective, minimal
and, since application graphs are not known to grow above a
few hundred microservices, should incur bounded overhead.

Application-Level Protocol. CHARON allows client agents
and overload handlers to add metadata to requests traversing
the application graph. For example, a request could carry
the amount of tokens that it has spent already in the graph
services, allowing the overload handlers to ensure system-
wide fairness objectives by, for example, prioritizing requests
that have spent more tokens in the system.

4.2 Policy
CHARON offers configurable parameters to support varied
policies. First, operators must specify fixed pricing, like Break-
water’s,1 or dynamic differentiated pricing (c.f., Section 5).
Operators must also configure how often prices are updated.
Price updates depend on evolving system conditions such as
processor utilization, queueing delays, or number of requests
waiting for responses from downstream microservices. Local
prices might be influenced by the topology and the node’s
location in the application graph. In preliminary experiments,

1But because static prices do not react to overload, additional control mecha-
nisms will be needed.

Charon: A Framework for Microservice Overload Control HotNets’21, November 10-12, 2021, Virtual Event, UK

A

GET >= 13
SET >= 54
TargetQ = 6

GET: 4 + 9
SET: 45 +9

Client

10
tokens/usecond

17

17

81

20

54

9
1

Overload handler

Price table

R
e
q
u
e
s
t

q
u
e
u
e

B

GET >= 4
TargetQ = 4

4
3

C

SET >= 45
TargetQ = 3

SET: 45GET: 4

45
14

13

8

9

Client

10
tokens/usecond

Client

10
tokens/usecond

59

95

Figure 3: Microservice Graph for Policy.

we use round-trip time as the price update interval. Tuning
this frequency may reveal interesting trade-offs between re-
sponsiveness and efficiency.

Second, operators must instantiate each client with a token
generation policy. The rate at which tokens are generated
will determine clients’ sending rate. Clients’ token holdings
correspond to resource allocations in a shared system. These
holdings can be affected by priority or entitlement policies.
Tokens generation may depend on how they are spent. An
overload handler might admit only requests owning the re-
quired number of tokens, or tokens might be used to signal
relative priorities and influence AQM in the event of overload.

5 CASE STUDY
Figure 3 presents a simple application with two types of re-
quests. Get requests traverse nodes A and B while Set requests
traverse A and C. Assume Set requires longer service times
than Get.

This application illustrates several challenges in overload
control from Section 3. When C is severely overloaded, pair-
wise control cannot prevent clients from sending Set requests
to A even as C throttles the volume of Sets it can receive
from A. Unless it can distinguish Set and Get requests from
clients, A will perform wasted computation for Set requests
that cannot get serviced by C.

Furthermore, suppose the application in Figure 3 also serves
Plus requests, that require subrequests to both B andC. If Plus
overloads both B and C, forcing them to drop some of their
requests instead of admitting them, overload control should
coordinate the drop of dependent sub-requests at B and C to
avoid wasted computation and improve goodput.

Objectives. The SLO specifies service time targets for Get
and Set that are 4 and 3 times their average service times, re-
spectively. Queue lengths at B and C are proxies for overload.
A sets a target buffer depth (e.g., six). Subject to these con-
straints, the control policy seeks to increase goodput, which
increases with request throughput and decreases with dropped
requests. The pursuit of goodput motivates topology-aware
rate limiting and load shedding.

Policy Design. Clients generate tokens at a fixed rate (e.g.,
10 tokens per microsecond) and can spend any number of
tokens up to its current holdings when issuing a request to
the application graph. Requests must hold at least the re-
quired number of tokens to receive service. Requests holding
fewer tokens than the posted price are dropped. Admitted or
dropped, any extra tokens accompanying a request are not
returned to sender. Nonetheless, it would be interesting to
explore policies where extra tokens are returned. Local prices
are set based on the k-th highest demand, where k is the buffer
depth.

For example, suppose B sets its overload threshold to k = 4.
Normally, the price of service is one token. With overload,
when more than four tasks are queued, the price is set to the
number of tokens held by the fourth wealthiest request in
the queue. In Figure 3, B’s price is set to four tokens and
requests holding fewer tokens are dropped. C’s price is set
similarly. Thus, pricing policy links admission control and
demand fluctuations at each microservice.

Additive Price Tables. Similar price policies apply to A
except that its overload handler must additionally account
for downstream prices. Suppose A’s target queue length is
six requests and it has enqueued a number of Gets and Sets.
The Get requests hold {17, 17, 20, 9, 1} tokens while the
Set requests hold {81, 54} tokens. Further suppose that A’s
current views of B and C’s prices are 4 and 45, respectively.
A computes its prices based on queued requests’ token

holdings and downstream prices. First, because its overload
threshold is six requests, A’s base price is set to the number
of tokens held by the sixth wealthiest request in its queue
(here 9 tokens). Next, A’s prices are differentiated for request
types and adds the price of downstream services (i.e., 9+4=13
tokens for Get, 9+45=54 tokens for Set).

Topology- and Request-aware Rate Limiting. Nodes in
the application graph modulate their request rate based on
topology-aware prices. Because A knows B and C’s prices, it

HotNets’21, November 10-12, 2021, Virtual Event, UK J. Xing, H. M. Demoulin, K. Kallas, B. C. Lee

will not waste work on requests with an insufficient number
of tokens. Similarly, because clients observe A’s additive
price table, which reflects the total price for Get and Set
requests, they will refrain from issuing requests if they hold
an insufficient number of tokens.

The case study also illustrates request awareness. Overload
on the Set path does not affect the Get path as long as A can
still enqueue and serve requests. In contrast, control that is
oblivious to request types would waste work, computing at A
for requests that are then dropped at B.

Topology-aware Load Shedding. During overload, rate
limiting might not be adequate and the system might resort
to dropping requests. In the case of the Plus requests, which
require sub-requests to both B andC, priced at 9+ 4+ 45 = 58
tokens, requests with fewer than 58 tokens are dropped even
before entering A’s queue, thereby avoiding work that will be
wasted further downstream due to drops.

Now suppose that A receives a burst of Plus requests lead-
ing to an overload at both B and C. Due to the burst, it is
possible that A has enqueued many Plus requests before re-
ceiving the price updates from B and C. In this case, the
objective is to minimize wasted work by ensuring that B and
C drop the subrequests for the same Plus requests. Our policy
spreads surplus tokens to downstream services evenly, and
therefore both B and C will drop and admit the same subsets
of subrequests Plus. The policy assumes some variability in
token holdings across requests. Thus, our policy coordinates
load shedding such that B and C drop the same subrequests
(those with fewer tokens) without requiring communication
between them.

6 DISCUSSION
Trust Model. We have focused on CHARON functionality,
assuming trustworthy clients and services. However, a client
might try to game the framework to obtain more resources or
a malicious client could try to disrupt the entire service. When
clients can tamper with token generation and spending mod-
ules, CHARON’s server side would need a validation module
that checks whether token spending is consistent with genera-
tion rate and history. Exploring trust models and validation
techniques is a promising avenue for future research.

Auto-Scaling and Scheduling. Overload might be resolved
by enlisting more resources; auto-scaling is widely supported
service providers [1, 18, 23]. However, there are likely limits
to the number of additional resources due to cost and setup
delays. Today’s auto-scaling is often an order of magnitude
slower than what is necessary to maintain quality-of-service
for high-performance applications [16]. Overload can be ana-
lyzed and mitigated with queueing theory [21] and scheduling,

but identifying the optimal policy is difficult [33]. Coordi-
nated auto-scaling, scheduling, and overload control is an
open research challenge.

Information Staleness. In all distributed systems, there is a
tension between centralization and decentralization that leads
to accuracy and performance trade-offs. Achieving “0-RTT”
overload control is an open research problem. One direction
might be an optimized token spending policy that minimizes
dropped requests.

Topology Awareness and Dynamic Control Flow. Some
policies might operate with an incomplete view of the service
graph whereas others might require a comprehensive view.
For instance, in Section 3, only out-of-band overload control
for long request paths requires a complete view of the graph.
In addition, we have assumed that requests’ execution path
are deterministic. Alhough this assumption holds for many
applications, such as data analytics and streaming engines, it
falls short in others. Dynamically building views of execution
paths and inferring downstream prices for a new request is
an open research question. One solution maintains expected
values in price tables, reflecting the likelihood that a request
follows a specific downstream path.

Market Theory for Overload Control. CHARON’s token
and price mechanisms permit studying overload control from
the perspective of market dynamics. User fairness can be
viewed from a game-theoretic perspective and we might seek
policies that produce solution concepts, such as a Competi-
tive Equilibrium from Equal Incomes (CEEI), with attractive
properties [15, 31]. In another example, a sudden influx of
users may cause inflation as the number of available tokens
increases and overload control would increase prices until the
system reaches a new equilibrium.

As with other dynamic systems, there is a question of
whether CHARON can converge and reach an equilibrium.
We posit that as long as policies are stateful (e.g., accounting
for past price updates), the system can settle on price update
intervals that lead to convergence.

ACKNOWLEDGMENTS
We would like to thank our shepherd, Aurojit Panda, and the
anonymous HotNets reviewers for their insightful comments.
This work is partially funded by NSF CNS-1750158 and NSF
1763514.

Charon: A Framework for Microservice Overload Control HotNets’21, November 10-12, 2021, Virtual Event, UK

REFERENCES
[1] Amazon Web Service. [n. d.]. AWS auto-scaling. https://aws.amazon.

com/autoscaling/. ([n. d.]). Accessed: 2021-22-09.
[2] Apache Software Foundation. [n. d.]. Apache Thrift. https://thrift.

apache.org/. ([n. d.]). Accessed: 2021-23-06.
[3] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike

Paleczny. 2012. Workload Analysis of a Large-Scale Key-Value Store.
In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and Modeling of Com-
puter Systems (SIGMETRICS ’12). Association for Computing Machin-
ery, New York, NY, USA, 53–64. https://doi.org/10.1145/2254756.
2254766

[4] C4Media. [n. d.]. Decomposing Twitter: Adventures in Service-
Oriented Architecture. https://www.slideshare.net/InfoQ/decomposing-
twitter-adventures-in-serviceoriented-architecture. ([n. d.]).

[5] Yanpei Chen, Rean Griffith, Junda Liu, Randy H. Katz, and An-
thony D. Joseph. 2009. Understanding TCP Incast Throughput Col-
lapse in Datacenter Networks. In Proceedings of the 1st ACM Work-
shop on Research on Enterprise Networking (WREN ’09). Associa-
tion for Computing Machinery, New York, NY, USA, 73–82. https:
//doi.org/10.1145/1592681.1592693

[6] Inho Cho, Ahmed Saeed, Joshua Fried, Seo Jin Park, Mohammad
Alizadeh, and Adam Belay. 2020. Overload Control for µs-scale RPCs
with Breakwater. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20). 299–314.

[7] Cloud Native Computing Foundation. [n. d.]. gRPC, A high perfor-
mance, open source universal RPC framework. https://grpc.io/. ([n. d.]).
Accessed: 2021-23-06.

[8] Adrian Cockcroft. [n. d.]. Evolution of Microser-
vices - Craft Conference. https://www.slideshare.net/
adriancockcroft/evolution-of-microservices-craft-conference.
([n. d.]). https://www.slideshare.net/adriancockcroft/
evolution-of-microservices-craft-conference

[9] Adrian Cockcroft. [n. d.]. Microservices Work-
shop - Craft Conference. https://www.slideshare.net/
adriancockcroft/microservices-workshop-craft-conference.
([n. d.]). https://www.slideshare.net/adriancockcroft/
microservices-workshop-craft-conference

[10] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking Cloud Serving Systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing
(SoCC ’10). Association for Computing Machinery, New York, NY,
USA, 143–154. https://doi.org/10.1145/1807128.1807152

[11] Jeffrey Dean and Luiz André Barroso. 2013. The Tail at Scale. Com-
mun. ACM 56, 2 (Feb. 2013), 74–80. https://doi.org/10.1145/2408776.
2408794

[12] Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich, Marios Kogias,
Boon Loo, and Linh Phan. [n. d.]. When Idling is Ideal: Optimizing Tail-
Latency for Heavy-Tailed Datacenter Workloads with PersÃl’phone. In
Proceedings of the 27th Symposium on Operating Systems Principles
(2021-10-26) (SOSP ’21). Association for Computing Machinery. https:
//doi.org/10.1145/3477132.3483571

[13] Nandita Dukkipati. 2008. Rate Control Protocol (RCP): Congestion
control to make flows complete quickly. Citeseer.

[14] Sameh Elnikety, Erich Nahum, John Tracey, and Willy Zwaenepoel.
2004. A method for transparent admission control and request schedul-
ing in e-commerce web sites. In Proceedings of the 13th international
conference on World Wide Web. 276–286.

[15] Duncan K. Foley. [n. d.]. Resource allocation and the public sector. 7,
1 ([n. d.]).

[16] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. 2020.
Caladan: Mitigating Interference at Microsecond Timescales. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, 281–297. https://www.usenix.org/
conference/osdi20/presentation/fried

[17] Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi,
Nayan Katarki, Ariana Bruno, Justin Hu, Brian Ritchken, Brendon Jack-
son, Kelvin Hu, Meghna Pancholi, Yuan He, Brett Clancy, Chris Colen,
Fukang Wen, Catherine Leung, Siyuan Wang, Leon Zaruvinsky, Mateo
Espinosa, Rick Lin, Zhongling Liu, Jake Padilla, and Christina Delim-
itrou. [n. d.]. An Open-Source Benchmark Suite for Microservices and
Their Hardware-Software Implications for Cloud & Edge Systems.
In Proceedings of the Twenty-Fourth International Conference on Archi-
tectural Support for Programming Languages and Operating Systems
(2019-04-04) (ASPLOS ’19). Association for Computing Machinery,
3–18. https://doi.org/10.1145/3297858.3304013

[18] Google. [n. d.]. Autoscaling groups of instances. https://cloud.google.
com/compute/docs/autoscaler. ([n. d.]). Accessed: 2021-22-09.

[19] Md E. Haque, Yong hun Eom, Yuxiong He, Sameh Elnikety, Ricardo
Bianchini, and Kathryn S. McKinley. 2015. Few-to-Many: Incremental
Parallelism for Reducing Tail Latency in Interactive Services. In Pro-
ceedings of the Twentieth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASP-
LOS ’15). Association for Computing Machinery, New York, NY, USA,
161–175. https://doi.org/10.1145/2694344.2694384

[20] Md E. Haque, Yuxiong He, Sameh Elnikety, Thu D. Nguyen, Ricardo
Bianchini, and Kathryn S. McKinley. 2017. Exploiting Heterogeneity
for Tail Latency and Energy Efficiency. In Proceedings of the 50th
Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO-50 ’17). Association for Computing Machinery, New York,
NY, USA, 625–638. https://doi.org/10.1145/3123939.3123956

[21] Mor Harchol-Balter. 2013. Performance modeling and design of com-
puter systems: queueing theory in action. Cambridge University Press.

[22] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazières, and Christos Kozyrakis. 2019. Shinjuku: Preemptive
Scheduling for Msecond-Scale Tail Latency. In Proceedings of the 16th
USENIX Conference on Networked Systems Design and Implementation
(NSDI’19). USENIX Association, USA, 345–359.

[23] Microsoft Azure. [n. d.]. Azure Autoscale. https://azure.microsoft.com/
en-us/features/autoscale/. ([n. d.]). Accessed: 2021-22-09.

[24] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ouster-
hout. 2018. Homa: A receiver-driven low-latency transport protocol
using network priorities. In Proceedings of the 2018 Conference of the
ACM Special Interest Group on Data Communication. 221–235.

[25] Network Working Group. [n. d.]. RFC 2475. https://datatracker.ietf.
org/doc/html/rfc2475#section-2.3.3.3. ([n. d.]). Accessed: 2021-23-06.

[26] Kathleen Nichols and Van Jacobson. 2012. Controlling Queue Delay.
Commun. ACM 55, 7 (July 2012), 42–50. https://doi.org/10.1145/
2209249.2209264

[27] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-
man Lee, Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek,
Paul Saab, et al. 2013. Scaling memcache at facebook. In 10th
{USENIX} Symposium on Networked Systems Design and Implementa-
tion ({NSDI} 13). 385–398.

[28] Craig Partridge. 1994. Gigabit networking. Addison-Wesley Profes-
sional.

[29] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS:
Achieving Low Tail Latency for Microsecond-Scale Networked Tasks.
In Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP ’17). Association for Computing Machinery, New York, NY,
USA, 325âĂŞ341. https://doi.org/10.1145/3132747.3132780

https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/
https://thrift.apache.org/
https://thrift.apache.org/
https://doi.org/10.1145/2254756.2254766
https://doi.org/10.1145/2254756.2254766
https://doi.org/10.1145/1592681.1592693
https://doi.org/10.1145/1592681.1592693
https://grpc.io/
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
https://www.slideshare.net/adriancockcroft/evolution-of-microservices-craft-conference
https://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
https://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
https://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
https://www.slideshare.net/adriancockcroft/microservices-workshop-craft-conference
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1145/2408776.2408794
https://doi.org/10.1145/3477132.3483571
https://doi.org/10.1145/3477132.3483571
https://www.usenix.org/conference/osdi20/presentation/fried
https://www.usenix.org/conference/osdi20/presentation/fried
https://doi.org/10.1145/3297858.3304013
https://cloud.google.com/compute/docs/autoscaler
https://cloud.google.com/compute/docs/autoscaler
https://doi.org/10.1145/2694344.2694384
https://doi.org/10.1145/3123939.3123956
https://azure.microsoft.com/en-us/features/autoscale/
https://azure.microsoft.com/en-us/features/autoscale/
https://datatracker.ietf.org/doc/html/rfc2475#section-2.3.3.3
https://datatracker.ietf.org/doc/html/rfc2475#section-2.3.3.3
https://doi.org/10.1145/2209249.2209264
https://doi.org/10.1145/2209249.2209264
https://doi.org/10.1145/3132747.3132780

HotNets’21, November 10-12, 2021, Virtual Event, UK J. Xing, H. M. Demoulin, K. Kallas, B. C. Lee

[30] Chris Richardson. [n. d.]. Evolution of Microservices - Craft Confer-
ence. https://microservices.io/patterns/reliability/circuit-breaker.html.
([n. d.]). https://microservices.io/patterns/reliability/circuit-breaker.
html

[31] Hal R Varian. [n. d.]. Equity, envy, and efficiency. 9, 1 ([n. d.]), 63–91.
https://doi.org/10.1016/0022-0531(74)90075-1

[32] Matt Welsh and David Culler. [n. d.]. Overload management as a funda-
mental service design primitive. In Proceedings of the 10th workshop on
ACM SIGOPS European workshop (2002-07-01) (EW 10). Association
for Computing Machinery, 63–69. https://doi.org/10.1145/1133373.
1133386

[33] Adam Wierman and Bert Zwart. 2012. Is tail-optimal scheduling
possible? Operations research 60, 5 (2012), 1249–1257.

[34] Christo Wilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron.
2011. Better Never than Late: Meeting Deadlines in Datacenter Net-
works. In Proceedings of the ACM SIGCOMM 2011 Conference (SIG-
COMM ’11). Association for Computing Machinery, New York, NY,
USA, 50–61. https://doi.org/10.1145/2018436.2018443

[35] Hao Zhou, Ming Chen, Qian Lin, Yong Wang, Xiaobin She, Sifan
Liu, Rui Gu, Beng Chin Ooi, and Junfeng Yang. [n. d.]. Overload
Control for Scaling WeChat Microservices. In Proceedings of the ACM
Symposium on Cloud Computing (2018-10-11) (SoCC ’18). Association
for Computing Machinery, 149–161. https://doi.org/10.1145/3267809.
3267823

https://microservices.io/patterns/reliability/circuit-breaker.html
https://microservices.io/patterns/reliability/circuit-breaker.html
https://microservices.io/patterns/reliability/circuit-breaker.html
https://doi.org/10.1016/0022-0531(74)90075-1
https://doi.org/10.1145/1133373.1133386
https://doi.org/10.1145/1133373.1133386
https://doi.org/10.1145/2018436.2018443
https://doi.org/10.1145/3267809.3267823
https://doi.org/10.1145/3267809.3267823

	Abstract
	1 Introduction
	2 Background
	3 Motivation
	3.1 System Model
	3.2 Microservice Characteristics

	4 Charon
	4.1 Mechanisms
	4.2 Policy

	5 Case Study
	6 Discussion
	Acknowledgments
	References

