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ABSTRACT
We introduce HiPErJiT, a profile-driven Just-in-Time compiler for
the BEAM ecosystem based on HiPE, the High Performance Erlang
compiler. HiPErJiT uses runtime profiling to decide which modules
to compile to native code and which of their functions to inline and
type-specialize. HiPErJiT is integrated with the runtime system of
Erlang/OTP and preserves aspects of Erlang’s compilation which
are crucial for its applications: most notably, tail-call optimization
and hot code loading at the module level. We present HiPErJiT’s ar-
chitecture, describe the optimizations that it performs, and compare
its performance with BEAM, HiPE, and Pyrlang. HiPErJiT offers
performance which is about two times faster than BEAM and almost
as fast as HiPE, despite the profiling and compilation overhead that
it has to pay compared to an ahead-of-time native code compiler.
But there also exist programs for which HiPErJiT’s profile-driven
optimizations allow it to surpass HiPE’s performance.
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1 INTRODUCTION
Erlang is a concurrent functional programming language with fea-
tures that support the development of scalable concurrent and
distributed applications, and systems with requirements for high
availability and responsiveness. Its main implementation, the Er-
lang/OTP system, comes with a byte code compiler that produces
portable and reasonably efficient code for its virtual machine, called
BEAM. For applications with requirements for better performance,
an ahead-of-time native code compiler called HiPE (High Perfor-
mance Erlang) can be selected. In fact, byte code and native code
can happily coexist in the Erlang/OTP runtime system.
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Despite this flexibility, the selection of the modules of an appli-
cation to compile to native code is currently manual. Perhaps it
would be better if the system itself could decide on which parts
to compile to native code in a just-in-time fashion. Moreover, it
would be best if this process was guided by profiling information
gathered during runtime, and was intelligent enough to allow for
the continuous run-time optimization of the code of an application.

This paper makes a first big step in that direction. We have devel-
oped HiPErJiT, a profile-driven Just-in-Time compiler for the BEAM
ecosystem based on HiPE. HiPErJiT employs the tracing support of
the Erlang runtime system to profile the code of bytecode-compiled
modules during execution and choose whether to compile these
modules to native code, currently employing all optimizations that
HiPE also performs by default. For the chosen modules, it addi-
tionally decides which of their functions to inline and/or specialize
based on runtime type information. We envision that the list of
additional optimizations to perform based on profiling informa-
tion will be extended in the future, especially if HiPErJiT grows to
become a JiT compiler which performs lifelong feedback-directed
optimization of programs. Currently, JiT compilation is triggered
only once for each loaded instance of a module, and the profiling
of their functions is stopped at that point.

The main part of this paper presents the architecture of HiPErJiT
and the rationale behind some of our design decisions (Section 3),
the profile-driven optimizations that HiPErJiT performs (Section 4),
and the performance it achieves (Section 5). Before all that, in the
next section, we review the current landscape of Erlang compilers.
Related work is scattered throughout.

2 ERLANG AND ITS COMPILERS
In this section, we present a brief account of the various compilers
for Erlang. Our main aim is to set the landscape for our work
and present a comprehensive high-level overview of the various
compilers that have been developed for the language, rather than
a detailed technical one. For the latter, we refer the reader to the
sites of these compilers and to publications about them.

2.1 JAM and BEAM
Technically, JAM and BEAM are abstract (virtual) machines for
Erlang, not compilers. However, they both have lent their name
to compilers that generate byte code for these machines. JAM is
the older one, but since 1998, when the Erlang/OTP system became
open source, the system has been exclusively based on BEAM.

The BEAM compiler is a fast, module-at-a-time compiler that
produces relatively compact byte code, which is then loaded into the
Erlang Run-Time System and expanded to indirectly threaded code
for the VM interpreter (called “emulator” in the Erlang community).
In the process, the BEAM loader specializes and/or merges byte
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Figure 1: Architecture of some Erlang/OTP components: ERTS, HiPE and ErLLVM (from [24]).

code instructions. By now, the BEAM compiler comes with a well-
engineered VM interpreter offering good performance for many
Erlang applications. As a result, some other languages (e.g., Elixir)
have chosen to use BEAM as their target. In recent years, the term
“BEAM ecosystem” has been used to describe these languages, and
also to signify that BEAM is important not only for Erlang.

2.2 HiPE and ErLLVM
The High-Performance Erlang (HiPE) compiler [13, 23] is an ahead-
of-time native code compiler for Erlang. It has backends for SPARC,
x86 [21], x86_64 [20], PowerPC, PowerPC 64, and ARM, has been
part of the Erlang/OTP distribution since 2002, and ismature by now.
HiPE aims to improve the performance of Erlang applications by
allowing users to compile their time-critical modules to native code,
and offer flexible integration between interpreted and native code.
Since 2014, the ErLLVM compiler [24], which generates native code
for Erlang using the LLVM compiler infrastructure [15] (versions 3.5
or higher), has also been integrated into HiPE as one of its backends,
selectable by the to_llvm compiler option. In general, ErLLVM
offers similar performance to the native HiPE backends [24].

Figure 1 shows how the HiPE compiler fits into Erlang/OTP. The
compilation process typically starts from BEAM byte code. HiPE
uses three intermediate representations, namely Symbolic BEAM,
Icode, and RTL, and then generates target-specific assembly either
directly or outsources its generation to ErLLVM.

Icode is a register-based intermediate language for Erlang. It
supports an infinite number of registers which are used to store
arguments and temporaries. All values in Icode are proper Erlang
terms. The call stack is implicit and preserves registers. Finally, as
Icode is a high-level intermediate language, bookkeeping operations
(such as heap overflow checks and context switching) are implicit.

RTL is a generic three-address register transfer language. Call
stack management and the saving and restoring of registers before
and after calls are made explicit in RTL. Heap overflow tests are also
made explicit and are propagated backwards in order to get merged.
Registers in RTL are separated in tagged and untagged, where the
untagged registers hold raw integers, floating-point numbers, and
addresses.

RTL code is then translated to machine-specific assembly code
(or to LLVM IR), virtual registers are assigned to real registers,
symbolic references to atoms and functions are replaced by their
real values in the running system, and finally, the native code is
loaded into the Erlang Run-Time System (ERTS) by the HiPE loader.

ERTS allows seamless interaction between interpreted and na-
tive code. However, there are differences in the way interpreted and
native code execution is managed. Therefore, a transition from na-
tive to interpreted code (or vice versa) triggers amode switch. Mode
switches occur in function calls, returns, and exception throws
between natively-compiled and interpreted functions. HiPE was de-
signedwith the goal of no runtime overhead as long as the execution
mode stays the same, so mode switches are handled by instrument-
ing calls with special mode switch instructions and by adding extra
call frames that cause a mode switch after each function return. Fre-
quent mode switching can negatively affect execution performance.
Therefore, it is recommended that the most frequently executed
functions of an application are all executed in the same mode [23].

2.3 BEAMJIT and Pyrlang
Unsurprisingly, JiT compilation has been investigated in the context
of Erlang several times in the past, both distant and more recent. For
example, both Jerico [12], the first native code compiler for Erlang
(based on JAM) circa 1996, and early versions of HiPE contained
some support for JiT compilation. However, this support never
became robust to the point that it could be used in production.

More recently, two attempts to develop tracing JiTs for Erlang
have been made. The first of them, BEAMJIT [6], is a tracing just-in-
time compiling runtime for Erlang. BEAMJIT uses a tracing strategy
for deciding which code sequences to compile to native code and
the LLVM toolkit for optimization and native code emission. It
extends the base BEAM implementation with support for profiling,
tracing, native code compilation, and support for switching be-
tween these three (profiling, tracing, and native) execution modes.
Performance-wise, back in 2014, BEAMJIT reportedly managed
to reduce the execution time of some small Erlang benchmarks
by 25–40% compared to BEAM, but there were also many other
benchmarks where it performed worse than BEAM [6]. Moreover,
the same paper reported that “HiPE provides such a large perfor-
mance improvement compared to plain BEAM that a comparison
to BEAMJIT would be uninteresting” [6, Sect. 5]. At the time of this
writing (May 2018), BEAMJIT is not yet a complete implementation
of Erlang; for example, it does not yet support floats. Although work
is ongoing in extending BEAMJIT, its overall performance, which
has improved, does not yet surpass that of HiPE.1 Since BEAMJIT
is not available, not even as a binary, we cannot compare against it.

1Lukas Larsson (member of Erlang/OTP team), private communication, May 2018.
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The second attempt, Pyrlang [11], is an alternative virtual ma-
chine for the BEAM byte code which uses RPython’s meta-tracing
JiT compiler [5] as a backend in order to improve the sequential
performance of Erlang programs. Meta-tracing JiT compilers are
tracing JiT compilers that trace and optimize an interpreter instead
of the program itself. The Pyrlang paper [11] reports that Pyrlang
achieves average performance which is 38.3% faster than BEAM
and 25.2% slower than HiPE, on a suite of sequential benchmarks.
Currently, Pyrlang is a research prototype and not yet a complete
implementation of Erlang, not even for the sequential part of the
language. On the other hand, unlike BEAMJIT, Pyrlang is available,
and we will directly compare against it in Section 5.

2.4 Challenges of Compiling Erlang
The Erlang programming language comes with some special char-
acteristics which make its efficient compilation quite challenging.
On the top of the list is hot code loading: the requirement to be able
to replace modules, on an individual basis, while the system is run-
ning and without imposing a long stop to its operation. The second
characteristic, which is closely related to hot code loading, is that
the language makes a semantic distinction between module-local
calls, which have the form f(...), and so called remote calls which
are module-qualified, i.e., have the form m:f(...), and need to look
up the most recently loaded version of module m, even from a call
within m itself.

These two characteristics, combined with the fact that Erlang is
primarily a concurrent language in which a large number of pro-
cesses may be executing code from different modules at the same
time, effectively impose that compilation happens in a module-at-
a-time fashion, without opportunities for cross-module optimiza-
tions. The alternative, i.e., performing cross-module optimizations,
implies that the runtime system must be able to quickly undo op-
timizations in the code of some module that rely on information
from other modules, whenever those other modules change. Since
such undoings can cascade arbitrarily deep, this alternative is not
very attractive engineering-wise.

The runtime system of Erlang/OTP supports hot code loading
in a particular, arguably quite ad hoc, way. It allows for up to two
versions of each module (mold andmcurrent ) to be simultaneously
loaded, and redirects all remote calls tomcurrent , the most recent
of the two. Whenevermnew , a new version of modulem, is about to
be loaded, all processes that still execute code ofmold are abruptly
terminated,mcurrent becomes the newmold , andmnew becomes
mcurrent . This quite elaborate mechanism is implemented by the
code loader with support from ERTS, which has control over all
Erlang processes.

Unlike BEAMJIT and Pyrlang, we decided, at least for the time
being, to leave the Erlang Run-Time System unchanged as far as
hot code loading is concerned. This also means that, like HiPE, the
unit of JiT compilation of HiPErJiT is the entire module.

3 HIPERJIT
The functionality of HiPErJiT can be briefly described as follows.
It profiles executed modules, maintaining runtime data such as
execution time and call graphs. It then decides which modules
to compile and optimize based on the collected data. Finally, it

Figure 2: High-level architecture of HiPErJiT.

compiles and loads the JiT-compiled modules in the runtime system.
Each of these tasks is handled by a separate component.

Controller The central controlling unit which decides which
modules should be profiled and which should be optimized
based on runtime data.

Profiler An intermediate layer between the controller and the
low-level Erlang profilers. It gathers profiling information,
organizes it, and propagates it to the controller for further
processing.

Compiler+Loader An intermediate layer between the con-
troller and HiPE. It compiles the modules chosen by the
controller and then loads them into the runtime system.

The architecture of the HiPErJiT compiler can be seen in Fig. 2.

3.1 Controller
The controller, as stated above, is the fundamental component of
HiPErJiT. It chooses the modules to profile, and uses the profiling
data to decide which modules to compile and optimize. It is essential
that no user input is needed to drive decision making. Our design
extends a lot of concepts from the work on Jalapeño JVM [1].

Traditionally, many JiT compilers use a lightweight call fre-
quency method to drive compilation [3]. This method maintains a
counter for each function and increments it every time the func-
tion is called. When the counter surpasses a specified threshold,
JiT compilation is triggered. This approach, while having very low
overhead, does not give precise information about the program
execution.

Instead, HiPErJiT makes its decision based on a simple cost-
benefit analysis. Compilation for a module is triggered when its
predicted future execution time when compiled, combined with
its compilation time, would be less than its future execution time
when interpreted:

FutureExecTimec +CompTime < FutureExecTimei

Of course, it is not possible to predict accurately the future execu-
tion time of a module or the time needed to compile it, so some
estimations need to be made. First of all, we need to estimate future
execution time. The results of a study about the lifetime of UNIX
processes [8] show that the total execution time of UNIX processes
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Figure 3: Estimating compilation time as a function of mod-
ule byte code size. Observe that both axes are log-scale.

follows a Pareto (heavy-tailed) distribution. The mean remaining
waiting time of this distribution is analogous to the amount of time
that has passed already. Motivated by those results, and assuming
that the analogy between a module and a UNIX process holds, we
consider future execution time of a module to be equal to its exe-
cution time until now FutureExecTime = ExecTime . In addition,
we consider that compiled code has a constant relative speedup
to the interpreted code, thus ExecTimec ∗ Speedupc = ExecTimei .
Finally, we consider that the compilation time for a module depends
linearly on its size, so CompTime = C ∗ Size . Based on the above
assumptions, the condition to check is:

ExecTimei
Speedupc

+C ∗ Size < ExecTimei

If this condition holds, the module is “worth” compiling.
We conducted two experiments in order to find suitable values

for the condition parameters Speedupc and C . In the first one, we
executed all the benchmark programs, that were used for evalua-
tion, before and after compiling their modules to native code. The
average speedup we measured was 2 and we used it as an estimate
for the Speedupc parameter. In the second experiment, we compiled
all the modules of the above programs, measured their compilation
time, and fitted a line to the set of given points using the Least
Squares method (cf. Fig. 3).

The line has a slope of 2.5e−5 so that is also the estimated compi-
lation cost (in seconds) per byte of byte code. It is worth mentioning
that, in reality, the compilation time does not depend only on mod-
ule size, but on many other factors (e.g., branching, exported func-
tions, etc). However, we consider this first estimate to be adequate
for our goal.

Finally, HiPErJiT uses a feedback-directed scheme to improve
the precision of the compilation decision condition when possible.
HiPErJiT measures the compilation time of each module it compiles
to native code and stores it in a persistent key-value storage, where
the key is a pair of the module name and the MD5 hash value of its
byte code. If the same version of that module (one that has the same
name and MD5 hash) is considered for compilation at a subsequent
time, HiPErJiT will use the stored compilation time measurement
in place of CompTime .

Figure 4: Profiler architecture and its components.

3.2 Profiler
The profiler is responsible for efficiently profiling executed code
using the ERTS profiling infrastructure. Its architecture, which can
be seen in Fig. 4, consists of:

• The profiler core, which receives the profiling commands
from the controller and transfers them to ERTS. It also re-
ceives the profiling results from the individual profilers and
transfers them back to the controller.
• The router, which receives all profiling messages from ERTS
and routes them to the correct individual profiler.
• The individual profilers, which handle profiling messages,
aggregate them, and transfer the results to the profiler core.
Each individual profiler handles a different subset of the exe-
cution data, namely function calls, execution time, argument
types, and process lifetime.

We designed the profiler in a way that facilitates the addition and
removal of individual profilers.

3.2.1 Profiling Execution Time. In order to profile the execution
time that is being spent in each function, the profiler receives a
time-stamped message from ERTS for each function call, function
return, and process scheduling action. Messages have the form
⟨Action,Timestamp, Process, Function⟩, where Action can be any
of the following values: call , return_to, sched_in, sched_out .

For each sequence of trace messages that refer to the same pro-
cess P , i.e., a sequence of form [(sched_in,T1, P , F1), (A2,T2, P , F2),
. . . , (An−1,Tn−1, P , Fn−1), (sched_out ,Tn , P , Fn )], we can compute
the time spent at each function by finding the difference of the
timestamps in each pair of adjacent messages, so [(T2 − T1, F1),
(T3 −T2, F2), ..., (Tn −Tn−1, Fn−1)]. The sum of all the differences
for each function gives the total execution time spent in each func-
tion. An advantage of this method is that it allows us to also track
the number of calls between each pair of functions, which is later
used for profile-driven call inlining (Section 4.2).

The execution time profiler is able to handle the stream of mes-
sages sent during the execution of sequential programs. However,
in concurrent programs, the rate at which messages are sent to
the profiler can increase uncontrollably, thus flooding its mailbox,
leading to high memory consumption.
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In order to tackle this problem, we implemented a probing mech-
anism that checks whether the number of unhandled messages
in the mailbox of the execution time profiler exceeds a threshold
(currently 1 million messages), in essence checking whether the
arrival rate of messages is higher than their consumption rate. If
the mailbox exceeds this size, no more trace messages are sent
from ERTS until the profiler handles the remaining messages in the
mailbox.

3.2.2 Type Tracing. The profiler is also responsible for type trac-
ing. As we will see, HiPErJiT contains a compiler pass that uses
type information for the arguments of functions in order to cre-
ate type-specialized, and hopefully better performing, versions of
functions. This type information is extracted from type specifica-
tions in Erlang source code (if they exist) and from runtime type
information which is collected and aggregated as described below.

The function call arguments to functions in modules that have
been selected for profiling are recorded by HiPErJiT. The ERTS
low-level profiling functionality returns the complete argument
values, so in principle their types can be determined. However,
functions could be called with complicated data structures as argu-
ments, and determining their types precisely requires a complete
traversal. As this could lead to a significant performance overhead,
the profiler approximates their types by a limited-depth term tra-
versal. In other words, depth-k type abstraction is used. Every type
T is represented as a tree with leaves that are either singleton
types or type constructors with zero arguments, and internal nodes
that are type constructors with one or more arguments. The depth
of each node is defined as its distance from the root. A depth-k
type Tk is a tree where every node with depth ≥ k is pruned
and over-approximated with the top type (any()). For example,
in Erlang’s type language [18], which supports unions of single-
ton types, the Erlang term {foo ,{bar ,[{a,17},{a,42}]}} has type
{'foo',{'bar',list({'a' ,17|42})}}, where 'a' denotes the sin-
gleton atom type a. Its depth-1 and depth-2 type abstractions are
{'foo',{any(),any()}} and {'foo',{'bar',list(any())}}.

The following two properties should hold for depth-k type ab-
stractions:

(1) ∀k .k ≥ 0⇒ T ⊑ Tk where ⊑ is the subtype relation.
(2) ∀t .t , T ⇒ ∃k .∀i .i ≥ k ⇒ t @ Ti

The first property guarantees correctness while the second allows
us to improve the approximation precision by choosing a greater k ,
thus allowing us to trade performance for precision or vice versa.

Another problem that we faced is that Erlang collections (lists
and maps) can contain elements of different types. Traversing them
in order to find their complete type could also create undesired
overhead. As a result, we decided to optimistically estimate the
collection element types. Although Erlang collections can contain
elements of many different types, this is rarely the case in practice.
In most programs, collections usually contain elements of the same
type. This, combined with the fact that HiPErJiT uses the runtime
type information to specialize some functions for specific type
arguments, gives us the opportunity to be more optimistic while
deducing the types of values. Therefore, we decided to approximate
the types of Erlang collections by considering only a small subset
of their elements.

What is left is a way to generalize and aggregate the type infor-
mation acquired through the profiling of many function calls. Types
in Erlang are internally represented using a subtyping system [18],
thus forming a type lattice. Because of that, a supremum operation
can be used to aggregate type information that has been acquired
through different traces.

3.2.3 Profiling Processes. Significant effort has been made to en-
sure that the overhead of HiPErJiT does not increase with the num-
ber of concurrent processes. Initially, performance was mediocre
when executing concurrent applicationswith a large number (≫ 100)
of spawned processes because of profiling overhead. While profil-
ing a process, every function call triggers an action that sends a
message to the profiler. The problem arises when many processes
execute concurrently, where a lot of execution time is needed by
the profiler process to handle all the messages being sent to it. In
addition, the memory consumption of the profiler skyrocketed as
messages arrived with a higher rate than they were consumed.

To avoid such problems, HiPErJiT employs genealogy based sta-
tistical profiling, or genealogy profiling in short. The idea is based
on the following observation. Massively concurrent applications
usually consist of a lot of sibling processes that have identical func-
tionality. Because of that, it is reasonable to sample a part of the
hundreds (or even thousands) of processes and only profile them
to get information about the system as a whole.

This sample should not be taken at random, but it should rather
follow the principle described above. We maintain a process tree by
monitoring the lifetime of all processes. The nodes of the process
tree are of the following type:

-type ptnode() :: {pid(), mfa(), [ptnode()]}.

The pid() is the process identifier, the mfa() is the initial function
of the process, and the [ptnode()] is a list of its children processes,
which is empty if it is a leaf. The essence of the process tree is
that sibling subtrees which share the same structure and execute
the same initial function usually have the same functionality. Thus
we could only profile a subset of those subtrees and get relatively
accurate results. However, finding subtrees that share the same
structure can become computationally demanding. Instead, we
decided to just find leaf processes that were spawned using the
same MFA and group them. So, instead of profiling all processes
of each group, we just profile a randomly sampled subset. The
sampling strategy that we used as a starting point is very simple
but still gives satisfactory results. When the processes of a group
are more than a specified threshold (currently 50) we sample only a
percentage (currently 10%) of them. The profiling results for these
subsets are then scaled accordingly (i.e., multiplied by 10) to better
represent the complete results.

3.3 Compiler+Loader
This is the component that is responsible for the compilation and
loading of modules. It receives the collected profiling data (i.e., type
information and function call data) from the controller, formats
them, and calls an extended version of the HiPE compiler to compile
the module and load it. The HiPE compiler is extended with two
additional optimizations that are driven by the collected profiling
data; these optimizations are described in Section 4.
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There are several challenges that HiPErJiT has to deal with, when
loading an Erlang module, as also mentioned in Section 2.4. First of
all, Erlang supports hot code loading, so a user can reload the code
of a module while the system is running. If this happens, HiPErJiT
automatically triggers the process of re-profiling this module.

Currently ERTS allows only up to two versions of the same mod-
ule to be simultaneously loaded. This introduces a rather obscure
but still possible race condition between HiPErJiT and the user. If
the user tries to load a new version of a module after HiPErJiT has
started compiling the current one, but before it has completed load-
ing it, HiPErJiT could load JiT-compiled code for an older version
of the module after the user has loaded the new one. Furthermore,
if HiPErJiT tries to load a JiT-compiled version of a modulem when
there are processes executing mold code, this could lead to pro-
cesses being killed. Thus, HiPErJiT loads a modulem as follows.
First, it acquires a module lock, not allowing any other process to
reload this specific module during that period. Then, it calls HiPE to
compile the target module to native code. After compilation is com-
plete, HiPErJiT repeatedly checks whether any process executes
mold code. When no process executesmold code, the JiT-compiled
version is loaded. Finally, HiPErJiT releases the lock so that new ver-
sions of modulem can be loaded again. This way, HiPErJiT avoids
that loading JiT-compiled code leads to processes being killed.

Of course, the above scheme does not offer any progress guar-
antees, as it is possible for a process to executemold code for an
indefinite amount of time. In that case, the user would be unable to
reload the module (e.g., after fixing a bug). In order to avoid this,
HiPErJiT stops trying to load a JiT-compiled module after a user-
defined timeout (the default value is 10 seconds), thus releasing the
module lock.

Let us end this section with a brief note about decompilation.
Most JiT compilers support decompilation, which is usually trig-
gered when a piece of JiT-compiled code is not executed frequently
enough anymore. The main benefit of doing this is that native code
takes up more space than byte code, so decompilation often reduces
the memory footprint of the system. However, since code size is
not a big concern in today’s machines, and since decompilation
can increase the number of mode switches (which are known to
cause performance overhead) HiPErJiT currently does not support
decompilation.

4 PROFILE-DRIVEN OPTIMIZATIONS
In this section, we describe two optimizations that HiPErJiT per-
forms, based on the collected profiling information, in addition to
calling HiPE: type specialization and inlining.

4.1 Type Specialization
In dynamically typed languages, there is typically very little type
information available during compilation. Types of values are deter-
mined at runtime and because of that, compilers for these languages
generate code that handles all possible value types by adding type
tests to ensure that operations are performed on terms of correct
type. Also all values are tagged, which means that their runtime
representation contains information about their type. The combi-
nation of these two features leads to compilers that generate less
efficient code than those for statically typed languages.

This problem has been tackled with static type analysis [16,
23], runtime type feedback [10], or a combination of both [14].
Runtime type feedback is essentially a mechanism that gathers type
information from calls during runtime, and uses this information to
create specialized versions of the functions for the most commonly
used types. On the other hand, static type analysis tries to deduce
type information from the code in a conservative way, in order to
simplify it (e.g., eliminate some unnecessary type tests). In HiPErJiT,
we employ a combination of these two methods.

4.1.1 Optimistic Type Compilation. After profiling the argument
types of function calls as described in Section 3.2.2, the collected
type information is used. However, since this information is approx-
imate or may not hold for all subsequent calls, the optimistic type
compilation pass adds type tests that check whether the arguments
have the appropriate types. Its goal is to create specialized (opti-
mistic) function versions, whose arguments are of known types.

Its implementation is straightforward. For each function f where
the collected type information is non-trivial:

• The function is duplicated into an optimized f$opt and a
“standard” f$std version of the function.
• A header function that contains all the type tests is created.
This function performs all necessary type tests for each ar-
gument, to ensure that they satisfy any assumptions upon
which type specialization may be based. If all tests pass, the
header calls f$opt, otherwise it calls f$std.
• The header function is inlined in every local function call
of the specified function f. This ensures that the type tests
happen on the caller’s side, thus improving the benefit from
the type analysis pass that happens later on.

4.1.2 Type Analysis. Optimistic type compilation on its own
does not offer any performance benefit. It simply duplicates the code
and forces execution of possibly redundant type tests. Its benefits
arise from its combination with type analysis and propagation.

Type analysis is an optimization pass performed by HiPE on
Icode that infers type information for each program point and then
simplifies the code based on this information. It removes checks
and type tests that are unnecessary based on the inferred type
information. It also removes some boxing and unboxing operations
from floating-point computations. A brief description of the type
analysis algorithm [18] is as follows:

(1) Construct the call graph for all the functions in a module
and sort it topologically based on the dependencies between
its strongly connected components (SCCs).

(2) Analyze the SCCs in a bottom-up fashion using a constraint-
based type inference to find the most general success typ-
ings [19] under the current constraints.

(3) Analyze the SCCs in a top-down order using a data-flow
analysis to propagate type information from the call sites to
module-local functions.

(4) Add new constraints for the types, based on the propagated
information from the previous step.

(5) If a fix-point has not been reached, go back to step 2.
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Initial constraints are mostly generated using the type information
of Erlang Built-In Functions (BIFs) and functions from the stan-
dard library which are known to the analysis. Guards and pattern
matches are also used to generate type constraints.

After type analysis, code optimizations are performed. First, all
redundant type tests or other checks are completely removed. Then
some instructions, such as floating-point arithmetic, are simplified
based on the available type information. Finally, control flow is
simplified and dead code is removed.

It is important to note that type analysis and propagation is
restricted to the module boundary. No assumptions are made about
the arguments of the exported functions, as those functions can
be called from modules which are not yet present in the system or
available for analysis. Thus, modules that export only few functions
benefit more from this analysis as more constraints are generated
for their local functions and used for type specializations.

4.1.3 An Example. We present a simple example that illustrates
type specialization. Listing 1 contains a function that computes
the power of two values, where the base of the exponentiation is a
number (an integer or a float) and the exponent is an integer.� �
-spec power(number(), integer(), number()) -> number().
power(_V1 , 0, V3) -> V3;
power(V1, V2, V3) -> power(V1, V2-1, V1*V3).� �

Listing 1: The source code of a simple power function.

Without the optimistic type compilation, HiPE generates the
Icode shown in Listing 2.� �
power/3(v1, v2, v3) ->
12:

v5 := v3
v4 := v2
goto 1

1:
_ := redtest() (primop)
if is_{integer ,0}(v4) then goto 3 else goto 10

3:
return(v5)

10:
v8 := '-'(v4, 1) (primop)
v9 := '*'(v1, v5) (primop)
v5 := v9
v4 := v8
goto 1� �
Listing 2: Generated Icode for the power function.

If we consider that this function is mostly called with a floating
point number as the first argument, then HiPE with optimistic
type compilation generates the Icode in Listing 3. The Icode for
power$std is not included as it is the same as the Icode for power

without optimistic type compilation.
As it can be seen, optimistic type compilation has used type

propagation and found that both v1 and v3 are always floats. The
code was then modified so that they are untagged unsafely in every
iteration and multiplied using a floating point instruction, whereas
without optimistic type compilation they are multiplied using the
standard general multiplication function, which checks the types of
both arguments and untags (and unboxes) them before performing
the multiplication.

� �
power/3(v1, v2, v3) ->
16:

_ := redtest() (primop)
if is_float(v1) then goto 3 else goto 14

3:
if is_integer(v2) then goto 5 else goto 14

5:
if is_float(v3) then goto 7 else goto 14

7:
power$opt/3(v1, v2, v3)

14:
power$std/3(v1, v2, v3)

power$opt/3(v1, v2, v3) ->
24:

v5 := v3
v4 := v2
goto 1

1:
_ := redtest() (primop)
if is_{integer ,0}(v4) then goto 3 else goto 20

3:
return(v5)

20:
v8 := '-'(v4, 1) (primop)
_ := gc_test <3>() (primop) -> goto 28, #fail 28

28:
fv10 := unsafe_untag_float(v5) (primop)
fv11 := unsafe_untag_float(v1) (primop)
_ := fclearerror() (primop)
fv12 := fp_mul(fv11 , fv10) (primop)
_ := fcheckerror() (primop)
v5 := unsafe_tag_float(fv12) (primop)
v4 := v8
goto 1� �

Listing 3: Generated Icode for the power function with opti-
mistic type compilation.

4.2 Inlining
Inlining is the process of replacing a function call with the body
of the called function. This improves performance in two ways.
First, it mitigates the function call overhead. Second, and most
important, it enables more optimizations to be performed later, as
most optimizations usually do not cross function boundaries. That
is the reason why inlining is usually performed in early phases of
compilation so that later phases become more effective.

However, aggressive inlining has several potential drawbacks,
both in compilation time, as well as in code size increase (which
in turn can also lead to higher execution times because of caching
effects). However, code size is less of a concern in today’s machines,
except of course in application domains where memory is not abun-
dant (e.g., in IoT or embedded systems).

In order to get a good performance benefit from inlining, the com-
piler must achieve a fine balance between inlining every function
call and not inlining anything at all. Therefore, the most important
issue when inlining is choosing which function calls to inline. There
has been a lot of work on how to make this decision with compile-
time [22, 25, 26, 28] as well as run-time information in the context
of JiT compilers [4, 7, 9, 27]. HiPErJiT makes its inlining decisions
based on run-time information, but also keeps its algorithm fairly
lightweight so as to not to impose a big overhead.

4.2.1 Inlining Decision. Ourmechanism borrows two ideas from
previous work, the use of call frequency [4] and call graphs [27] to
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guide the inlining decision. Recall that HiPErJiT compiles whole
modules at a time, thus inlining decisions are made based on infor-
mation from all the functions in a module. Due to hot code loading,
inlining across modules is not performed.

Finding the most profitable, performance-wise, function calls to
inline and also the most efficient order in which to inline them is a
heavy computational task and thus we decided to use heuristics to
greedily decide which function calls to inline and when. The call
frequency data that are used is the number of calls between each
pair of function, as also described in Section 3.2.

The main idea behind our decision mechanism is the assumption
that call sites which are visited the most are the best candidates for
inlining. Because of that our mechanism greedily chooses to inline
Fb into Fa when:

∀i, j .NumberO f Callsa,b ≥ NumberO f Callsi, j

where NumberO f Callsi, j is the number of calls from Fi to Fj .
Of course, inlining has to be restrained, so that it does not happen

for every function call in the program. We achieve this by limiting
the maximum code size of each module as seen below:

MaxCodeSize =min

(
SmallCodeSize

InitialCodesize
+ 1.1, 2.1

)
∗InitialCodeSize

Wemeasured code size as the number of instructions in the Icode
of a module and that SmallCodeSize is the size of the smallest mod-
ule in the benchmarks that were used for evaluation. To better clar-
ify, a modulem that has InitialCodeSizem = 2∗SmallCodeSize , will
be allowed to grow up toMaxCodeSizem = 1.6 ∗ InitialCodeSizem .
Note that the exact configuration of the maximum code size for-
mula have been chosen after evaluating its performance against
some alternatives. However, we have not extensively tuned it, and
it could certainly be improved.

A detailed description of the decision algorithm follows. Inlin-
ing decisions are made iteratively until there are no more calls to
inline or until the module has reached the maximum code size. The
iteration acts on the following data structures.
• A priority queue that contains pairs of functions (Fi , Fj ) and
the number of calls NoCi, j from Fi to Fj for each such pair.
This priority queue supports two basic operations:
– Delete-Maximum: which deletes and returns the pair with
the maximum number of calls.

– Update: which updates a pair with a new number of calls.
• A map of the total calls to each function, which is initially
constructed for each Fx by adding the number of calls for all
pairs on the priority queue TCx =

∑
i NoCi,x .

• A map of the code size of each function, which is used to
compute whether the module has become larger than the
specified limit.

The main loop works as follows:
(1) Delete-Maximum pair of functions (Fx , Fy ) from the priority

queue.
(2) Check whether inlining the pair (Fx , Fy ) makes the module

exceed the maximum code size limit. If it does, then the loop
continues, otherwise:
(a) All the local calls to Fy in Fx are inlined.

(b) The set of already inlined pairs is updated with the pair
(Fx , Fy ).

(c) The map of function sizes is updated for function Fx
based on its new size after the inline.

(d) The number of calls of every pair (Fx , Fi ) in the priority
queue is updated to NoCx,i + NoCx,y ∗ NoCy,i/TCy . In
practice this means that every call that was done from Fy
will now be also done from Fx .

4.2.2 Implementation. Our inlining implementation is fairly
standard except for some details specific to Icode. The steps below
describe the inlining process. In case the inlined call is a tail-call,
only the first two steps need to be performed.

(1) Variables and labels in the body of the callee are updated to
fresh ones so that there is no name clash with the variables
and labels in the body of the caller.

(2) The arguments of the function call are moved to the param-
eters of the callee.

(3) Tail-calls in the body of the callee are transformed to a nor-
mal call and a return.

(4) Return instructions in the body of the callee are transformed
into a move and a goto instruction that moves the return
value to the destination of the call and jumps to the end of
the body of the callee.

It is worth mentioning that Erlang uses cooperative scheduling
which is implemented by making sure that processes are executed
for a number of reductions and then yield. When the reductions of a
process are depleted, the process is suspended and another process
is scheduled in instead. Reductions are implemented in Icode by the
redtest() primitive operation (primop) in the beginning of each
function body; cf Listing 2. When inlining a function call, the call
to redtest() in the body of the callee is also removed. This is safe
to do, because inlining is bounded anyway.

5 EVALUATION
In this section, we evaluate the performance of HiPErJiT against
BEAM, which serves as a baseline for our comparison, and against
two systems that also aim to surpass the performance of BEAM.
The first of them is the HiPE compiler.2 The second is the Pyrlang3
meta-tracing JiT compiler for Erlang, which is a research prototype
and not a complete implementation; we report its performance
on the subset of benchmarks that it can handle. We were not able
to obtain a version of BEAMJIT to include in our comparison, as
this system is still (May 2018) not publicly available. However, as
mentioned in Section 2.3, BEAMJIT does not achieve performance
that is superior to HiPE anyway.

We conducted all experiments on a laptop with an Intel Core i7-
4710HQ @ 2.50GHz CPU and 16 GB of RAM running Ubuntu 16.04.

5.1 Profiling Overhead
Our first set of measurements concerns the profiling overhead that
HiPErJiT imposes. To obtain a rough worst-case estimate, we used a
modified version of HiPErJiT that profiles programs as they run but

2For both BEAM and HiPE, we used the ‘master’ branch of Erlang/OTP 21.0.
3We used the latest version of Pyrlang (https://bitbucket.org/hrc706/pyrlang/overview)
built using PyPy 5.0.1.

https://bitbucket.org/hrc706/pyrlang/overview
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does not compile any module to native code. Note that this scenario
is very pessimistic for HiPErJiT, because the common case is that
JiT compilation will be triggered for some modules, HiPErJiT will
stop profiling them at that point, and these modules will then most
likely execute faster, as we will soon see. But even if native code
compilation were not to trigger for any module, it would be very
easy for HiPErJiT to stop profiling after a certain time period has
passed or some other event (e.g., the number of calls that have been
profiled has exceeded a threshold) has occurred. In any case, we
executed all the benchmark programs, that were used for evaluation,
using the modified version of HiPErJiT and our measurements
showed that the overhead caused by genealogy profiling is around
10%. More specifically, the overhead we measured ranged from 5%
(in most cases) up to 40% for some heavily concurrent programs.

We also separatelymeasured the profiling overhead on all concur-
rent benchmarks with and without genealogy profiling, to measure
the benefit of genealogy over standard profiling. The average over-
head that standard profiling imposes on concurrent benchmarks
is 19%, while the average overhead of genealogy profiling on such
benchmarks is 13%.

5.2 Evaluation on Small Benchmark Programs
The benchmarks we used come from the ErLLVM benchmark suite4,
which has been previously used for the evaluation of HiPE [13],
ErLLVM [24], BEAMJIT [6], and Pyrlang [11]. The benchmarks can
be split in two sets: (1) a set of small, relatively simple but quite
representative Erlang programs, and (2) the set of Erlang programs
from the Computer Language Benchmarks Game (CLBG)5 as they
were when the ErLLVM benchmark suite was created.

Comparing the performance of a Just-in-Time with an ahead-of-
time compiler on small benchmarks is tricky, as the JiT compiler also
pays the overhead of compilation during the program’s execution.
Moreover, a JiT compiler needs some time to warm up. Because
of that, we have executed each benchmark enough times to allow
HiPErJiT to compile the relevant application modules to native
code. More specifically we run each benchmark 2 ∗ N times, where
after approximately N times HiPErJiT had compiled all relevant
modules to native code. We report three numbers for HiPErJiT: the
speedup achieved when considering the total execution time, the
speedup achieved when disregarding the first run, and the speedup
achieved in the last N runs, when a steady state has been reached.6
We also use two configurations of HiPE: one with the maximum
level of optimization (o3), and one where static inlining (using the
{inline_size,25} compiler directive) has been performed besides
o3.

The speedup of HiPErJiT, HiPE, and Pyrlang compared to BEAM
for the small benchmarks is shown in Figs. 5 and 6. (We have split
them into two figures based on scale of the y-axis, the speedup
over BEAM.) Note that the speedups that we report are averages of
five different executions of each benchmark multi-run. The black
vertical lines indicate the standard deviation. The overall average
speedup for each configuration is summarized in Table 1.

4https://github.com/cstavr/erllvm-bench
5http://benchmarksgame.alioth.debian.org/
6At the moment, HiPErJiT does not perform any code decompilation or deoptimization
and therefore it always reaches a steady state after it has compiled and optimized all
relevant modules.

Table 1: Speedup over BEAM for the small benchmarks.

Configuration Speedup

HiPE 2.04
HiPE + Static inlining 2.09
Pyrlang 1.14
HiPErJiT 1.63
HiPErJiT w/o 1st run 1.98
HiPErJiT last 50% runs 2.31

Table 2: Speedup over BEAM for the CLBG programs.

Configuration Speedup

HiPE 2.10
HiPE + Static inlining 2.10
HiPErJiT 1.77
HiPErJiT w/o 1st run 2.03
HiPErJiT last 50% runs 2.15

Overall, the performance of HiPErJiT is almost two times better
than BEAM and Pyrlang, but slightly worse than HiPE. However,
there also exist five benchmarks (nrev, qsort, fib, smith and tak)
where HiPErJiT, in its steady state (the last 50% of runs), surpasses
HiPE’s performance. This strongly indicates that the profile-driven
optimizations that HiPErJiT performs lead to more efficient code,
compared to that of an ahead-of-time native code compiler per-
forming static inlining.

Out of those five benchmarks, the most interesting one is smith.
It is an implementation of the Smith-Waterman DNA sequence
matching algorithm. The reasonwhyHiPErJiT offers better speedup
over HiPE is that profile-driven inlining manages to inline functions
alpha_beta_penalty/2 and max/2 in match_entry/5, which is the
most time-critical function of the program, thus allowing further
optimizations to improve performance. Static inlining on the other
hand does not inline max/2 in match_entry/5 even if one chooses
very large values for the inliner’s thresholds.

On the ring benchmark (Fig. 6), where amessage is cycled through
a ring of processes, HiPErJiT performs worse than both HiPE and
BEAM. To be more precise, all systems perform worse than BEAM
on this benchmark. The main reason is that the majority of the
execution time is spent on message passing (around 1.5 million
messages are sent per second), which is handled by BEAM’s run-
time system. Finally, there are a lot of process spawns and exits
(around 20 thousand per second), which leads to considerable pro-
filing overhead, as HiPErJiT maintains and constantly updates the
process tree.

Another interesting benchmark is stable (also Fig. 6), where
HiPErJiT performs slightly better than BEAM but visibly worse
than HiPE. This is mostly due to the fact that there are a lot of
process spawns and exits in this benchmark (around 240 thousand
per second), which leads to significant profiling overhead.

The speedup of HiPErJiT and HiPE compared to BEAM for the
CLBG benchmarks is shown in Figs. 7 and 8. The overall average
speedup for each configuration is shown in Table 2.

https://github.com/cstavr/erllvm-bench
http://benchmarksgame.alioth.debian.org/
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Figure 5: Speedup over BEAM on small benchmarks.
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Figure 6: Speedup over BEAM on small benchmarks.

As with the small benchmarks, the performance of HiPErJiT
mostly lies between BEAM and HiPE. When excluding the first
run, HiPErJiT outperforms both BEAM and HiPE in several bench-
marks (except, fannkuchredux, fasta, fibo, and nestedloop). How-
ever, HiPErJiT’s performance on some benchmarks (revcomp, and
threadring) is worse than both BEAM and HiPE because the profil-
ing overhead is higher than the benefit of compilation.

5.3 Evaluation on a Bigger Program
Besides small benchmarks, we also evaluate the performance of
HiPErJiT on a program of considerable size and complexity, as re-
sults in small or medium-sized benchmarks may not always provide
a complete picture for the expected performance of a compiler. The
Erlang program we chose, the Dialyzer [17] static analysis tool,
is big (about 30, 000 LOC), complex, and highly concurrent [2]. It
has also been heavily engineered over the years and comes with
hard-coded knowledge of the set of 26 modules it needs to compile
to native code upon its start to get maximum performance for most
use cases. Using an appropriate option, the user can disable this na-
tive code compilation phase, which takes more than a minute on the
laptop we use, and in fact this is what we do to get measurements
for BEAM and HiPErJiT.

We use Dialyzer in twoways. The first builds a Persistent Lookup
Table (PLT) containing cached type information for all modules
under erts, compiler, crypto, hipe, kernel, stdlib and syntax_tools.
The second analyzes these applications for type errors and other
discrepancies. The speedups of HiPErJiT and HiPE compared to
BEAM for the two use ways of using Dialyzer are shown in Table 3.

The results show that HiPErJiT achieves performance which
is better than BEAM’s but worse than HiPE’s. There are various
reasons for this. First of all, Dialyzer is a complex application where
functions from many different modules of Erlang/OTP (50–100) are
called with arguments of significant size (e.g., the source code of the
applications that are analyzed). This leads to considerable tracing
and bookkeeping overhead. Second, some of the called modules
contain very large, often compiler-generated, functions and their
compilation takes considerable time (the total compilation time is
about 70 seconds, which is a significant portion of the total time).
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Figure 7: Speedup over BEAM on the CLBG programs.
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Figure 8: Speedup over BEAM on the CLBG programs.

Table 3: Speedups over BEAM for two Dialyzer use cases.

Dialyzer Speedup

Configuration Building PLT Analyzing

HiPE 1.78 1.73
HiPE + Static inlining 1.78 1.77
HiPErJiT 1.46 1.42
HiPErJiT w/o 1st run 1.61 1.55
HiPErJiT last 50% runs 1.67 1.60

Finally, HiPErJiT does not compile all modules from the start, which
means that a percentage of the time is spent running interpreted
code and performing mode switches which are more expensive
than same-mode calls. In contrast, HiPE has hard-coded knowledge
of “the best” set of modules to natively compile before the analysis
starts, and runs native code from the beginning of the analysis.

6 CONCLUDING REMARKS AND FUTURE
WORK

We have presented HiPErJiT, a profile-driven Just-in-Time compiler
for the BEAM ecosystem based on the HiPE native code compiler.
It offers performance which is better than BEAM’s and compa-
rable to HiPE’s, on most benchmarks. Aside from performance,
we have been careful to preserve features such as hot code load-
ing that are considered important for Erlang’s application domain,
and have made design decisions that try to maximize the chances
that HiPErJiT remains easily maintainable and in-sync with com-
ponents of the Erlang/OTP implementation. In particular, besides
employing the HiPE native code compiler for most of its optimiza-
tions, HiPErJiT uses the same concurrency support that the Erlang
Run-Time System provides, and relies upon the tracing infrastruc-
ture that it offers. Thus, it can straightforwardly profit from any
improvements that may occur in these components.

Despite the fact that the current implementation of HiPErJiT is
quite robust and performs reasonably well, profile-driven JiT com-
pilers are primarily engineering artifacts and can never be consid-
ered completely “done”. Besides making the current optimizations
more effective and implementing additional ones, one item which
is quite high on our “to do” list is investigating techniques that
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reduce the profiling overhead, especially in heavily concurrent ap-
plications. For the current state of HiPErJiT, the profiling overhead
is bigger than we would like it to be but, on the other hand, it’s not
really a major concern because once HiPErJiT decides to compile
a module to native code the profiling of its functions stops and
the overhead drops to zero. But it will become an issue if HiPErJiT
becomes a JiT compiler that performs lifelong feedback-directed
optimization of programs, which is a direction that we want to
pursue.
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