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Abstract
This paper presents PaSh, a system for parallelizing POSIX
shell scripts. Given a script, PaSh converts it to a dataflow
graph, performs a series of semantics-preserving program
transformations that expose parallelism, and then converts
the dataflow graph back into a script—one that adds POSIX
constructs to explicitly guide parallelism coupled with PaSh-
provided Unix-aware runtime primitives for addressing per-
formance- and correctness-related issues. A lightweight an-
notation language allows command developers to express
key parallelizability properties about their commands. An
accompanying parallelizability study of POSIX and GNU
commands—two large and commonly used groups—guides
the annotation language and optimized aggregator library
that PaSh uses. PaSh’s extensive evaluation over 44 unmod-
ified Unix scripts shows significant speedups (0.89–61.1×,
avg: 6.7×) stemming from the combination of its program
transformations and runtime primitives.
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Fig. 1. PaSh overview. PaSh identifies dataflow regions (§4.1), converts
them to dataflow graphs (§4.2), applies transformations (§4.3) based on the
parallelizability properties of the commands in these regions (§3.1, §3.2),
and emits a parallel script (§4.4) that uses custom primitives (§5).

1 Introduction
The Unix shell is an environment—often interactive—for
composing programs written in a plethora of programming
languages. This language-agnosticism, coupled with Unix’s
toolbox philosophy [33], makes the shell the primary choice
for specifying succinct and simple pipelines for data process-
ing, system orchestration, and other automation tasks. Un-
fortunately, parallelizing such pipelines requires significant
effort shared between two different programmer groups:
• Command developers, responsible for implementing indi-
vidual commands such as sort, uniq, and jq. These de-
velopers usually work in a single programming language,
leveraging its abstractions to provide parallelism when-
ever possible. As they have no visibility into the com-
mand’s uses, they expose a plethora of ad-hoc command-
specific flags such as -t, --parallel, -p, and -j [34, 42, 50].

• Shell users, who use POSIX shell constructs to combine
multiple such commands from many languages into their
scripts and are thus left with only a few options for incor-
porating parallelism. One option is to use manual tools
such as GNU parallel [52], ts [22], qsub [14], SLURM [60];
these tools are either command-unaware, and thus at risk
of breaking program semantics, or too coarse-grained, and
thus only capable of exploiting parallelism at the level of
entire scripts rather than individual components. Another
option is to use shell primitives (such as &, wait) to ex-
plicitly induce parallelism, at a cost of manual effort to
split inputs, rewrite scripts, and orchestrate execution—
an expensive and error-prone process. To top it off, all
these options assume a good understanding of parallelism;
users with domain of expertise outside computing—from
hobbyists to data analysts—are left without options.
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This paper presents a system called PaSh and outlined in
Fig. 1 for parallelizing POSIX shell scripts that benefits both
programmer groups, with emphasis on shell users. Com-
mand developers are given a set of abstractions, akin to
lightweight type annotations, for expressing the paralleliz-
ability properties of their commands: rather than expressing
a command’s full observable behavior, these annotations fo-
cus primarily on its interaction with state. Shell users, on the
other hand, are provided with full automation: PaSh analyzes
their scripts and extracts latent parallelism. PaSh’s transfor-
mations are conservative, in that they do not attempt to
parallelize fragments that lack sufficient information—i.e., at
worst, PaSh will choose to not improve performance rather
than risking breakage.
To address cold-start issues, PaSh comes with a library

of parallelizability annotations for commands in POSIX and
GNU Coreutils. These large classes of commands serve as
the shell’s standard library, expected to be used pervasively.
The study that led to their characterization also informed
PaSh’s annotation and transformation components.

These components are tied together with PaSh’s runtime
component. Aware of the Unix philosophy and abstractions,
it packs a small library of highly-optimized data aggregators
as well as high-performance primitives for eager data split-
ting and merging. These address many practical challenges
and were developed by uncovering several pathological situ-
ations, on a few of which we report.
We evaluate PaSh on 44 unmodified scripts including (i)

a series of smaller scripts, ranging from classic Unix one-
liners to modern data-processing pipelines, and (ii) two large
and complex use cases for temperature analysis and web
indexing. Speedups range between 0.89–61.1× (avg: 6.7×),
with the 39 out of 44 scripts seeing non-trivial speedups.
PaSh’s runtime primitives add to the base speedup extracted
by PaSh’s program transformations—e.g., 8.83× over a base
5.93× average for 10 representative Unix one-liners. PaSh ac-
celerates a large program for temperature analysis by 2.52×,
parallelizing both the computation (12.31×) and the prepro-
cessing (2.04×) fragment (i.e., data download, extraction, and
cleanup), the latter traditionally falling outside of the focus of
conventional parallelization systems—even though it takes
75% of the total execution time.

The paper is structured as follows. It starts by introducing
the necessary background on shell scripting and present-
ing an overview of PaSh (§2). Sections 3–5 highlight key
contributions:
• §3 studies the parallelizability of shell commands, and in-
troduces a lightweight annotation language for commands
that are executable in a data-parallel manner.

• §4 presents a dataflow model and associated transforma-
tions that expose data parallelism while preserving the
semantics of the sequential program.

• §5 details PaSh’s runtime component, discussing the cor-
rectness and performance challenges it addresses.

After PaSh’s evaluation (§6) and comparison with related
work (§7), the paper concludes (§8).

2 Background and Overview
This section reviews Unix shell scripting through an exam-
ple (§2.1), later used to explore parallelization challenges (§2.2)
and how they are addressed by PaSh (§2.3).

2.1 Running Example: Weather Analysis
Suppose an environmental scientist wants to get a quick
sense of trends in the maximum temperature across the U.S.
over the past five years. As the National Oceanic and Atmo-
spheric Administration (NOAA) has made historic tempera-
ture data publicly available [38], answering this question is
only a matter of a simple data-processing pipeline.
Fig. 2’s script starts by pulling the yearly index files and

filtering out URLs that are not part of the compressed dataset.
It then downloads and decompresses each file in the remain-
ing set, extracts the values that indicate the temperature,
and filters out bogus inputs marked as 999. It then calcu-
lates the maximum yearly temperature by sorting the values
and picking the top element. Finally, it matches each maxi-
mum value with the appropriate year in order to print the
result. The effort expended writing this script is low: its data-
processing core amounts to 12 stages and, when expressed
as a single line, is only 165 characters long. This program
is no toy: a Java program implementing only the last four
stages takes 137 LoC [59, §2.1]. To enable such a succinct
program composition, Unix incorporates several features.
Unix Features Composition in Unix is primarily achieved
with pipes (|), a construct that allows for task-parallel ex-
ecution of two commands by connecting them through a
character stream. This stream is comprised of contiguous
character lines separated by newline characters (NL) delin-
eating individual stream elements. For example, Fig 2’s first
grep outputs (file-name) elements containing gz, which are
then consumed by tr. A special end-of-file (EOF) condition
marks the end of a stream.
Different pipeline stages process data concurrently and

possibly at different rates—e.g., the second curl produces
output at a significantly slower pace than the grep commands
before and after it. The Unix kernel facilitates scheduling,
communication, and synchronization behind the scenes.

Command flags, used pervasively in Unix, are configura-
tion options that the command’s developer has decided to
expose to its users to improve the command’s general appli-
cability. For example, by omitting sort’s -r flag that enables
reverse sorting, the user can easily get the minimum temper-
ature. The shell does not have any visibility into these flags;
after it expands special characters such as ~ and *, it leaves
parsing and evaluation entirely up to individual commands.
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base="ftp://ftp.ncdc.noaa.gov/pub/data/noaa";
for y in {2015..2019}; do
curl $base/$y | grep gz | tr -s" " | cut -d" " -f9 |
sed "s;^;$base/$y/;" | xargs -n 1 curl -s | gunzip |
cut -c 89-92 | grep -iv 999 | sort -rn | head -n 1 |
sed "s/^/Maximum temperature for $y is: /"

done

Fig. 2. Calculatingmaximum temperatures per year. The script down-
loads daily temperatures recorded across the U.S. for the years 2015–2019
and extracts the maximum for every year.

Finally,Unix provides an environment for composing com-
mands written in any language. Many of these commands
come with the system—e.g., ones defined by the POSIX stan-
dard or ones part of the GNU Coreutils—whereas others
are available as add-ons. The fact that commands are de-
veloped in a variety of languages—including shell scripts—
provides users with significant flexibility. For example, one
could replace sort and headwith ./avg.py to get the average
rather than the maximum—the pipeline still works, as long
as ./avg.py conforms to the interface outlined earlier.

2.2 Parallelization Challenges
While these features aid development-effort economy through
powerful program composition, they complicate shell script
parallelization, which even for simple scripts such as the one
in Fig. 2 create several challenges.
Commands In contrast to restricted programming frame-
works that enable parallelization by supporting a few careful-
ly-designed primitives [6, 9, 16, 62], the Unix shell provides
an unprecedented number and variety of composable com-
mands. To be parallelized, each command may require spe-
cial analysis and treatment—e.g., exposing data parallelism
in Fig. 2’s tr or sort would require splitting their inputs,
running them on each partial input, and then merging the
partial results.1 Automating such an analysis is infeasible, as
individual commands are black boxes written in a variety of
programming languages and models. Manual analysis is also
challenging, due to the sheer number of commands and the
many flags that affect their behavior—e.g., Fig. 2’s program
invokes cut with two separate sets of flags.
Scripts Another challenge is due to the language of the
POSIX shell. First, the language contains constructs that
enforce sequential execution: The sequential composition
operator (;) in Fig. 2 indicates that the assignment to base

must be completed before everything else. Moreover, the lan-
guage semantics only exposes limited task-based parallelism
in the form of constructs such as &. Even though Fig. 2’s for
focuses only on five years of data, curl still outputs thou-
sands of lines per year; naive parallelization of each loop

1 As explained earlier (§1), commands such as sort may have ad hoc flags
such as --parallel, which do not compose across commands and may risk
breaking correctness or not exploiting performance potential (§6.5).

iteration will miss such opportunities. Any attempt to au-
tomate parallelization should be aware of the POSIX shell
language, exposing latent data parallelism without modify-
ing execution semantics.
Implementation On top of command and shell semantics,
the broader Unix environment has its own set of quirks. Any
attempt to orchestrate parallel execution will hit challenges
related to task parallelism, deadlock prevention, and runtime
performance. For example, forked processes piping their
combined results to Fig. 2’s headmay not receive a PIPE signal
if head exits prior to opening all pipes. Moreover, several
commands such as sort and uniq require specialized data
aggregators in order to be correctly parallelized.

2.3 PaSh Design Overview
At a high level, PaSh takes as input a POSIX shell script
like the one in Fig. 2 and outputs a new POSIX script that
incorporates data parallelism. The degree of data parallelism
sought by PaSh is configurable using a --width parameter,
whose default value is system-specific. Fig. 3 highlights a
few fragments of the parallel script resulting from applying
PaSh with --width=2 to the script of Fig. 2—resulting in 2
copies of {grep, tr, cut, etc.}.
PaSh first identifies sections of the script that are poten-

tially parallelizable, i.e., lack synchronization and scheduling
constraints, and converts them to dataflow graphs (DFGs).
It then performs a series of DFG transformations that ex-
pose parallelism without breaking semantics, by expanding
the DFG to the desired width. Finally, PaSh converts these
DFGs back to a shell script augmented with PaSh-provided
commands. The script is handed off to the user’s original
shell interpreter for execution. PaSh addresses the aforemen-
tioned challenges (§2.2) as below.
Commands To understand standard commands available
in any shell, PaSh groups POSIX and GNU commands into a
small but well-defined set of parallelizability classes (§3.1).
Rather than describing a command’s full observable behavior,
these classes focus on information that is important for data
parallelism. To allow other commands to use its transforma-
tions, PaSh defines a light annotation language for describing
a command’s parallelizability class (§3.2). Annotations are
expressed once per command rather than once per script
and are aimed towards command developers rather than
its users, so that they can quickly and easily capture the
characteristics of the commands they develop.
Scripts To maintain sequential semantics, PaSh first ana-
lyzes a script to identify dataflow regions containing com-
mands that are candidates for parallelization (§4.1). This
analysis is guided by the script structure: some constructs
expose parallelism (e.g., &, |); others enforce synchroniza-
tion (e.g., ;, ||). PaSh then converts each dataflow region
to a dataflow graph (DFG) (§4.2), a flexible representation
that enables a series of local transformations to expose data
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mkfifo $t{0,1...}
curl $base/$y > $t0 & cat $t0 | split $t1 $t2 &
cat $t1 | grep gz > $t3 &
cat $t2 | grep gz > $t4 &
...
cat $t9 | sort -rn > $t11 & cat $t10 | sort -rn > $t12 &
cat $t11 | eager > $t13 & cat $t12 | eager > $t14 &
sort -mrn $t13 $t14 > $t15 &
cat $t15 | head -n1 > $out1 &
wait $! && get-pids | xargs -n 1 kill -SIGPIPE

Fig. 3. Output of pash --width=2 for Fig. 2 (fragment). PaSh orches-
trates the parallel execution through named pipes, parallel operators, and
custom runtime primitives—e.g., eager, split, and get-pids.

parallelism, converting the graph into its parallel equiva-
lent (§4.3). Further transformations compile the DFG back to
a shell script that uses POSIX constructs to guide parallelism
explicitly while aiming at preserving the semantics of the
sequential program (§4.4).
Implementation PaSh addresses several practical chal-
lenges through a set of constructs it provides—i.e., modular
components for augmenting command composition (§5). It
also provides a small and efficient aggregator library target-
ing a large set of parallelizable commands. All these com-
mands live in the PATH and are addressable by name, which
means they can be used like (and by) any other commands.

3 Parallelizability Classes
PaSh aims at parallelizing data-parallel commands, i.e., ones
that can process their input in parallel, encoding their char-
acteristics by assigning them to parallelizability classes. PaSh
leans towards having a few coarse classes rather than many
detailed ones—among other reasons, to simplify their under-
standing and use by command developers.

This section starts by defining these classes, along with a
parallelizability study of the commands in POSIX and GNU
Coreutils (§3.1). Building on this study, it develops a light-
weight extensibility framework that enables light-touch par-
allelization of a command by its developers (§3.2). PaSh in
turn uses this language to annotate POSIX and GNU com-
mands and generate their wrappers, as presented in later
sections.

3.1 Parallelizability of Standard Libraries
Broadly speaking, shell commands can be split into four
major classes with respect to their parallelization character-
istics, depending on what kind of state they mutate when
processing their input (Tab.1). These classes are ordered in
ascending difficulty (or impossibility) of parallelization. In
this order, some classes can be thought of as subsets of the
next—e.g., all stateless commands are pure—meaning that
the synchronization mechanisms required for any superclass
would workwith its subclass (but foregoing any performance
improvements). Commands can change classes depending
on their flags, which are discussed later (§3.2).

Tab. 1. Parallelizability Classes. Broadly, Unix commands can be
grouped into four classes according to their parallelizability properties.

Class Key Examples Coreutils POSIX

Stateless S○ tr, cat, grep 13 (12.5%) 19 (12.7%)
Parallelizable Pure P○ sort, wc, head 17 (16.3%) 13 (8.7%)
Non-parallelizable Pure N○ sha1sum 13 (12.5%) 11 (7.3%)
Side-effectful E○ env, cp, whoami 61 (58.6%) 105 (70.4%)

Stateless Commands The first class, S○, contains com-
mands that operate on individual line elements of their in-
put, without maintaining state across invocations. These are
commands that can be expressed as a purely functional map
or filter—e.g., grep filters out individual lines and basename

removes a path prefix from a string. They may produce mul-
tiple elements—e.g., tr may insert NL tokens—but always
return empty output for empty input. Workloads that use
only stateless commands are trivial to parallelize: they do
not require any synchronization to maintain correctness, nor
caution about where to split inputs.
The choice of line as the data element strikes a conve-

nient balance between coarse-grained (files) and fine-grained
(characters) separation while staying aligned with Unix’s
core abstractions. This choice can affect the allocation of
commands in S○, as many of its commands (about 1/3) are
stateless within a stream element—e.g., tr transliterates char-
acters within a line, one at a time—enabling further paral-
lelization by splitting individual lines. This feature may seem
of limited use, as these commands are computationally in-
expensive, precisely due to their narrow focus. However, it
may be useful for cases with very large stream elements (i.e.,
long lines) such as the .fastq format used in bioinformatics.
Parallelizable Pure Commands The second class, P○,
contains commands that respect functional purity—i.e., same
outputs for same inputs—but maintain internal state across
their entire pass. The details of this state and its propagation
during element processing affect their parallelizability char-
acteristics. Some commands are easy to parallelize, because
they maintain trivial state and are commutative—e.g., wc
simply maintains a counter. Other commands, such as sort,
maintain more complex invariants that have to be taken into
account when merging partial results.
Often these commands do not operate in an online fash-

ion, but need to block until the end of a stream. A typical
example of this is sort, which cannot start emitting results
before the last input element has been consumed. Such con-
straints affect task parallelism, but not data parallelism: sort
can be parallelized significantly using divide-and-conquer
techniques—i.e., by encoding it as a group of (parallel)map
functions followed by an aддreдate that merges the results.
Non-parallelizable Pure Commands The third class, N○,
contains commands that, while purely functional, cannot
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be parallelized within a single data stream.2 This is because
their internal state depends on prior state in non-trivial ways
over the same pass. For example, hashing commands such
as sha1sum maintain complex state that has to be updated
sequentially. If parallelized on a single input, each stage
would need to wait on the results of all previous stages,
foregoing any parallelism benefits.

It is worth noting that while these commands are not paral-
lelizable at the granularity of a single input, they are still par-
allelizable across different inputs. For example, a web crawler
involving hashing to compare individual pages would allow
sha1sum to proceed in parallel for different pages.
Side-effectful Commands The last class, E○, contains
commands that have side-effects across the system—for ex-
ample, updating environment variables, interacting with the
filesystem, and accessing the network. Such commands are
not parallelizable without finer-grained concurrency control
mechanisms that can detect side-effects across the system.
This is the largest class, for two main reasons. First, it

includes commands related to the file-system—a central ab-
straction of the Unix design and philosophy [46]. In fact,
Unix uses the file-system as a proxy to several file-unrelated
operations such as access control and device driving. Second,
this class contains commands that do not consume input
or do not produce output—and thus are not amenable to
data parallelism. For example, date, uname, and finger are all
commands interfacing with kernel- or hardware-generated
information and do not consume any input from user pro-
grams.

3.2 Extensibility Framework
To address the challenge of a language-agnostic environ-
ment (§2.2), PaSh allows communicating key details about
their parallelizability through a lightweight extensibility
framework comprising two components: an annotation lan-
guage, and an interface for developing parallel command
aggregators. The framework can be used both by develop-
ers of new commands as well as developers maintaining
existing commands. The latter group can express additions
or changes to the command’s implementation or interface,
which is important as commands are maintained or extended
over long periods of time.
The extensibility framework is expected to be used by

individuals who understand the commands and their par-
allelizability properties, and thus PaSh assumes their cor-
rectness. The framework could be used as a foundation for
crowdsourcing the annotation effort, for testing annotation
records, and for generating command aggregators. We use
this extension framework in a separate work to synthesize
command aggregators automatically [57].

2 Note that these commands may still be parallelizable across different data
streams, for example when applied to different input files.

Key Concerns PaSh’s annotations focus on three crucial
concerns about a command: (C1) its parallelizability class,
(C2) its inputs and outputs, and the characteristics of its input
consumption, and (C3) how flags affect its class, inputs, and
outputs. The first concern was discussed extensively in the
previous section; we now turn to the latter two.
Manipulating a shell script in its original form to expose

parallelism is challenging as each command has a different
interface. Some commands read from standard input, while
others read from input files. Ordering here is important, as
a command may read several inputs in a predefined input
order. For example, grep "foo" f1 - f2 first reads from f1,
then shifts to its standard input, and finally reads f2.

Additionally, commands expose flags or options for allow-
ing users to control their execution. Such flags may directly
affect a command’s parallelizability classification as well as
the order in which it reads its inputs. For example, cat de-
faults to S○, but with -n it jumps into P○ because it has to
keep track of a counter and print it along with each line.
To address all these concerns, PaSh introduces an anno-

tation language encoding first-order logic predicates. The
language allows specifying the aforementioned informa-
tion, i.e., correspondence of arguments to inputs and out-
puts and the effects of flags. Annotations assign one of the
four parallelizability class as a default class, subsequently
refined by the set of flags the command exposes. Addition-
ally, for commands in S○ and P○, the language captures how
a command’s arguments, standard input, and standard out-
put correspond to its inputs and outputs. Annotations in
these classes can also express ordering information about
these inputs—effectively lifting commands into a more con-
venient representation where they only communicate with
their environment through a list of input and output files.
The complete annotation language currently contains 8

operators, one of which supports regular expressions. It was
used to annotate 47 commands, totaling 708 lines of JSON—
an effort that took about 3–4 hours. Annotation records are
by default conservative so as to not jeopardize correctness,
but can be incrementally refined to capture parallelizabil-
ity when using increasingly complex combinations of flags.
The language is extensible with more operators (as long
as the developer defines their semantics); it also supports
writing arbitrary Python code for commands whose proper-
ties are difficult to capture—e.g., higher-order xargs, whose
parallelizability class depends on the class of the first-order
command that it invokes.
Example Annotations Two commands whose annota-
tions sit at opposing ends of the complexity spectrum are
chmod and cut. The fragment below shows the annotation
for chmod.

{ "command": "chmod",
"cases": [ { "predicate": "default",

"class": "side-effectful" } ] }

5
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This annotation is simple, but serves as an illustration of
the annotation structure. Each annotation is a JSON record
that contains the command name, and a sequence of cases.
Each case contains a predicate that matches on the argu-
ments of the command invocation. It assigns a paralleliz-
ability class (C1) to a specific command instance, i.e., the
combination of its inputs-output consumption (C2) and its in-
vocation arguments (C3). In this case, chmod is side-effectful,
and thus the "default" predicate of its single cases value
always matches—indicating the presence of side-effects.

The annotation for cut is significantly more complex, and
is only shown in part (the full annotation is in Appendix B).
This annotation has two cases, each of which consists of
a predicate on cut’s arguments and an assignment of its
parallelizability class, inputs, and outputs as described above.
We only show cut’s first predicate, slightly simplified for
clarity.
{ "predicate": {"operator": "exists", "operands": [ "-z" ]},
"class": "n-pure",
"inputs": [ "args[:]" ],
"outputs": [ "stdout" ] }

This predicate indicates that if cut is called with -z as an
argument, then it is in N○, i.e., it only interacts with the
environment by writing to a file (its stdout) but cannot be
parallelized. This is because -z forces cut to delimit lines
with NUL instead of newline, meaning that we cannot paral-
lelize it by splitting its input in the line boundaries. The case
also indicates that cut reads its inputs from its non-option
arguments.
Experienced readers will notice that cut reads its input

from its stdin if no file argument is present. This is expressed
in the "options" part of cut’s annotation, shown below:
{ "command": "cut",

"cases": [ ... ],
"options": [ "empty-args-stdin",

"stdin-hyphen" ] }

Option "empty-args-stdin" indicates that if non-option ar-
guments are empty, then the command reads from its stdin.
Furthermore, option "stdin-hyphen" indicates that a non-
option argument that is just a dash - represents the stdin.

The complete annotation in Appendix B) shows the rest of
the cases (including the default case for cut, which indicates
that it is in S○).
Custom Aggregators For commands in S○, the annota-
tions are enough to enable parallelization: commands are
applied to parts of their input in parallel, and their outputs
are simply concatenated.

To support the parallelization of arbitrary commands in P○,
PaSh allows supplying custom map and aggregate functions.
In line with the Unix philosophy, these functions can be
written in any language as long as they conform to a few
invariants: (i)map is in S○ and aggregate is in P○, (ii)map can
consume (or extend) the output of the original command and
aggregate can consume (and combine) the results of multiple

map invocations, and (iii) their composition produces the
same output as the original command. PaSh can use themap
and aggregate functions in its graph transformations (§4) to
further expose parallelism.
Most commands only need an aggregate function, as the

map function for many commands is the sequential com-
mand itself. PaSh defines a set of aggregators formany POSIX
and GNU commands in P○. This set doubles as both PaSh’s
standard library and an exemplar for community efforts tack-
ling other commands. Below is the Python code for one of
the simplest aggregate functions, the one for wc:
#!/usr/bin/python
import sys, os, functools, utils

def parseLine(s):
return map(int, s.split())

def emitLine(t):
f = lambda e: str(e).rjust(utils.PAD_LEN, ' ')
return [" ".join(map(f, t))]

def agg(a, b):
# print(a, b)
if not a:

return b
az = parseLine(a[0])
bz = parseLine(b[0])
return emitLine([ (i+j) for (i,j) in zip(az, bz) ])

utils.help()
res = functools.reduce(agg, utils.read_all(), [])
utils.out("".join(res))

The core of the aggregator, function agg, takes two input
streams as its arguments. The reduce function lifts the aggre-
gator to arity n to support an arbitrary number of parallel
map commands. This lifting allows developers to think of
aggregators in terms of two inputs, but generalize them to
operate on many inputs. Utility functions such as read and
help, common across PaSh’s aggregator library, deal with
error handling when reading multiple file descriptors, and
offer a -h invocation flag that demonstrates the use of each
aggregator.
PaSh’s library currently contains over 20 aggregators,

many of which are usable by more than one command or flag.
For example, the aggregator shown above is shared among
wc, wc -lw, wc -lm, etc.

4 Dataflow Graph Model
PaSh’s core is an abstract dataflow graph (DFG) model (§4.2)
used as the intermediate representation on which PaSh per-
forms parallelism-exposing transformations. PaSh first lifts
sections of the input script to the DFG representation (§4.1),
then performs transformations to expose parallelism (up to
the desired --width) (§4.3), and finally instantiates each DFG
back to a parallel shell script (§4.4). A fundamental charac-
teristic of PaSh’s DFG is that it encodes the order in which
a node reads its input streams (not just the order of input
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DFG1
DFG2

DFG1
cat f1 f2

grep foo

|

&& f1

f2

f3

DFG2
sort f3

cat grep foo f3

>

f3

mkfifo t1
cat f1 f2 > t1 & # node 1
grep foo > f3 & # node 2
wait $!
rm t1

Sort in1 in2 > out
=>

Mkfifo t1 t2
Sort in1 > t1 &
Sort in2 > t2 &
Sort -m t1 t2 > out & # node 3
Wait $!
Rm t1 t2

Grep > t1 &
Grep > t2 &
…

Cat t1 t2 t3 … > out &

“
F1 > t1;
F2 t1 > t2
“

“
F1 > t1
“

“
F2 t1 > t2
“

F1 > t1 &
F2 t1 > t2

F_m > t1 & 
F_r t1 t2 > t3 &
F_m > t2 &

# Assuming t1 t2 are pipes
F1 > t1 &
F2 > t2 &
Wait(t1, t2) > t3, t4  &
F3 t1 t2 > t3 &

Grep t1 > t2 &
Grep t3 > t4 &

Grep t2 > t5 &
Grep t4 > t6 &

Cat t5 t6 > t7

N Cat | split N | grep 
| cat

N - grep
| cat

N > cat > grep

2 > cat > grep > t1

Cat t1 t2 > t3

N > grep > cat 

Fm fm

fm, fr, fm 
Combined

F1 > F2

Split N > F1 > Cat N 
> F2

Split N > f1 > cat N > 
split 2^N > f2 > cat N

N > fR> t2

Split K > f1 > f2 > cat 
K

sort stdout 

Fig. 4. From a script AST to DFGs. The AST on the left has two dataflow
regions, each not extending beyond && (Cf.§4.1). Identifiers f1, f2, and f3
sit at the boundary of the DFG.

elements per stream), which in turn enables a set of graph
transformations that can be iteratively applied to expose
parallelization opportunities for S○ and P○ commands.
To the extent possible, this section is kept informal and

intuitive. The full formalization of the dataflow model, the
shell↔DFG bidirectional translations, and the parallelizing
transformations, as well as their proof of correctness with
respect to the script’s sequential output, are all presented in
a separate work [20].

4.1 Frontend: From a Sequential Script to DFGs

DataflowRegions In order to apply the graph transforma-
tions that expose data parallelism, PaSh first has to identify
program sub-expressions that can be safely transformed to
a dataflow graph, i.e., sub-expressions that (i) do not impose
any scheduling or synchronization constraints (e.g., by using
;), and (ii) take a set of files as inputs and produce a set of
files as outputs. The search for these regions is guided by
the shell language and the structure of a particular program.
These contain information about (i) fragments that can be
executed independently, and (ii) barriers that are natural
synchronization points. Consider this code fragment (Fig. 4):

cat f1 f2 | grep "foo" > f3 && sort f3

The cat and grep commands execute independently (and
concurrently) in the standard shell, but sort waits for their
completion prior to start. Intuitively, dataflow regions cor-
respond to sub-expressions of the program that would be
allowed to execute independently by different processes in
the POSIX standard [18]. Larger dataflow regions can be
composed from smaller ones using the pipe operator (|) and
the parallel-composition operator (&). Conversely, all other
operators, including sequential composition (;) and logical
operators (&&, ||), represent barrier constructs that do not
allow dataflow regions to expand beyond them.
Translation Pass PaSh’s front-end performs a depth-first
search on the AST of the given shell program. During this
pass, it extends the dataflow regions bottom-up, translating
their independent components to DFG nodes until a barrier
construct is reached. All AST subtrees not translatable to
DFGs are kept as they are. The output of the translation
pass is the original AST where dataflow regions have been
replaced with DFGs.
To identify opportunities for parallelization, the trans-

lation pass extracts each command’s parallelizability class
together with its inputs and outputs. To achieve this for

each command, it searches all its available annotations (§3.2)
and resorts to conservative defaults if none is found. If the
command is in S○, P○, or N○, the translation pass initiates a
dataflow region that is propagated up the tree.

Due to the highly dynamic nature of the shell, some infor-
mation is not known to PaSh at translation time. Examples
of such information include the values of environment vari-
ables, unexpanded strings, and sub-shell constructs. For the
sake of correctness, PaSh takes a conservative approach and
avoids parallelizing nodes for which it has incomplete infor-
mation. It will not attempt to parallelize sub-expressions for
which the translation pass cannot infer that, e.g., an environ-
ment variable passed as an argument to a command does
not change its parallelizability class.

4.2 Dataflow Model Definitions
The two main shell abstractions are (i) data streams, i.e., files
or pipes, and (ii) commands, communicating through these
streams.
Edges—Streams Edges in the DFG represent streams, the
basic data abstraction of the shell. They are used as commu-
nication channels between nodes in the graph, and as the
input or output of the entire graph. For example, the edges
in DFG1 of Figure 4 are the files f1, f2, and f3, as well as the
unnamed pipe that connects cat and grep. We fix the data
quantum to be character lines, i.e., sequences of characters
followed by the newline character,3 so edges represent pos-
sibly unbounded sequences of lines. As seen above, an edge
can either refer to a named file, an ephemeral pipe, or a Unix
FIFO used for interprocess communication. Edges that do
not start from a node in the graph represent the graph inputs;
edges that do not point to a node in the graph represent its
outputs.
Nodes—Commands A node of the graph represents a re-
lation (to capture nondeterminism) from a possibly empty
list of input streams to a list of output streams. This repre-
sentation captures all the commands in the classes S○, P○,
and N○, since they only interact with the environment by
reading and writing to streams. We require that nodes are
monotone, namely that they cannot retract output once they
have produced it. As an example, cat, grep, and sort are the
nodes in the DFGs of Figure 4.
StreamingCommands A large subset of the parallelizable
S○ and P○ classes falls into the special category of streaming
commands. These commands have two execution phases.
First, they consume a (possibly empty) set of input streams
that act as configuration. Then, they transition to the second
phase where they consume the rest of their inputs sequen-
tially, one element at a time, in the order dictated by the

3 This is a choice that is not baked into PaSh’s DFG model, which supports
arbitrary data elements such as characters and words, but was made to
simplify alignment with many Unix commands.
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cat grep 

Grep t1 > t2 &
Grep t3 > t4 &

Grep t2 > t5 &
Grep t4 > t6 &

Cat t5 t6 > t7

N Cat | split N | grep 
| cat

N - grep
| cat

N > cat > grep

2 > cat > grep > t1

Cat t1 t2 > t3

N > grep > cat 

Fm fm

fm, fr, fm 
Combined

F1 > F2

Split N > F1 > Cat N 
> F2

Split N > f1 > cat N > 
split 2^N > f2 > cat N

N > fR> t2

Split K > f1 > f2 > cat 
K

grep 

grep 

grep 

cat τ

Fig. 5. Stateless parallelization transformation. The cat node is com-
muted with the stateless node to exploit available data parallelism.

configuration phase and produce a single output stream. The
simplest example of a streaming command is cat, which has
an empty first phase and then consumes its inputs in order,
producing their concatenation as output. A more interesting
example is grep invokedwith -f patterns.txt as arguments;
it first reads patterns.txt as its configuration input, identi-
fying the patterns for which to search on its input, and then
reads a line at a time from its standard input, stopping when
it reaches EOF.

4.3 Graph Transformations
PaSh defines a set of semantics-preserving graph transfor-
mations that act as parallelism-exposing optimizations. Both
the domain and range of these transformations is a graph in
PaSh’s DFG model; transformations can be composed arbi-
trarily and in any order. Before describing the different types
of transformations, we formalize the intuition behind classes
S○ and P○ described informally earlier (§3.1).
Stateless and Parallelizable Pure Commands Stateless
commands such as tr operate independently on individ-
ual lines of their input stream without maintaining any
state (§3.1). To avoid referring to the internal command state,
we can instead determine that a command is stateless if its
output is the same if we “restart” it after it has read an ar-
bitrary prefix of its input. If a command was stateful, then
it would not produce the same output after the restart. For-
mally, a streaming command f is stateless if it commutes
with the operation of concatenation on its streaming input,
i.e., it is a semigroup homomorphism:

∀x ,x ′, c, f (x · x ′, c) = f (x , c) · f (x ′, c)

In the above x ·x ′ is the concatenation of the two parts of f ’s
streaming input and c is the configuration input (which needs
to be passed to both instances of f ). The above equation
means that applying the command f to a concatenation of
two inputs x ,x ′ produces the same output as applying f to
each input x ,x ′ separately, and concatenating the outputs.
Note that we only focus on deterministic stateless commands
and that is why f is a function and not a relation in the above.
Pure commands such as sort and wc can also be paral-

lelized, using divide-and-conquer parallelism. These com-
mands can be applied independently on different segments
of their inputs, and then their outputs are aggregated to pro-
duce the final result. More formally, these pure commands f
can be implemented as a combination of a functionmap and
an associative function aддreдate that satisfy the following
equation:

∀x ,x ′, c, f (x · x ′, c) = aддreдate(map(x , c),map(x ′, c), c)

cmd 

Grep t1 > t2 &
Grep t3 > t4 &

Grep t2 > t5 &
Grep t4 > t6 &

Cat t5 t6 > t7

N Cat | split N | grep 
| cat

N - grep
| cat

N > cat > grep

2 > cat > grep > t1

Cat t1 t2 > t3

N > grep > cat 

Fm fm

fm, fr, fm 
Combined

F1 > F2

Split N > F1 > Cat N 
> F2

Split N > f1 > cat N > 
split 2^N > f2 > cat N

N > fR> t2

Split K > f1 > f2 > cat 
K

cmd τ
1

cat 

τ
2

τ
3

relay 

cat split 

Fig. 6. Auxiliary transformations. These augment the DFG with cat,
split, and relay nodes.

Parallelization Transformations Based on these equa-
tions, we can define a parallelization transformation on a
node f ∈ S○ whose streaming input is a concatenation, i.e.,
produced using the command cat, of n input streams and is
followed by a node f ′ (Fig. 5). The transformation replaces
f with n new nodes, routing each of the n input streams
to one of them, and commutes the cat node after them to
concatenate their outputs and transfer them to f ′. Formally:

v(x1 · x2 · · · xn , s) ⇒ v(x1, s) · v(x2, s) · · ·v(xn , s)

The transformation can be extended straightforwardly to
nodes v ∈ P○, implemented by a (map,aддreдate) pair:

v(x1 · x2 · · · xn , s) ⇒

aддreдate(map(x1, s),map(x2, s), . . .map(xn , s), s)

Both transformations can be shown to preserve the behavior
of the original graph assuming that the pair (map,aддreдate)
meets the three invariants outlined earlier (§3.2) and the
aforementioned equations hold.
Auxiliary Transformations PaSh also performs a set of
auxiliary transformations t1−3 that are depicted in Fig. 6. If a
node has many inputs, t1 concatenates these inputs by insert-
ing a cat node to enable the parallelization transformations.
In cases where a parallelizable node has one input and is
not preceded by a concatenation, t2 inserts a cat node that
is preceded by its inverse split, so that the concatenation
can be commuted with the node. Transformation t3 inserts a
relay node that performs the identity transformation. Relay
nodes can be useful for performance improvements (§5), as
well as for monitoring and debugging.
Degree of Parallelism The degree of parallelism achieved
by PaSh is affected by the width of the final dataflow graph.
The dataflow width corresponds, intuitively, to the number
of data-parallel copies of each node of the sequential graph
and thus the fanout of the split nodes that PaSh introduces.
The dataflow width is configured using the --width param-
eter, which can be chosen by the user depending on their
script characteristics, input data, and target execution envi-
ronment. By default, PaSh assigns width to 2 if it is executing
on a machine with 2-16 processors, and floor(cpu_cores/8)

if it is executing on a machine with more than 16 processors.
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This is a conservative limit that achieves benefits due to par-
allelism but does not consume all system resources. It is not
meant to be optimal, and as shown in our evaluation, differ-
ent scripts achieve optimal speedup with different --width
values, which indicates an interesting direction for future
work.

4.4 Backend: From DFGs to a Parallel Shell Script
After applying transformations (§4.3), PaSh translates all
DFGs back into a shell script. Nodes of the graph are in-
stantiated with the commands and flags they represent, and
edges are instantiated as named pipes. A prologue in the
script creates the necessary intermediate pipes, and a trap

call takes care of cleaning up when the script aborts.

5 Runtime
This section describes technical challenges related to the
execution of the resulting script and how they are addressed
by PaSh’s custom runtime primitives.
Overcoming Laziness The shell’s evaluation strategy is
unusually lazy, in that most commands and shell constructs
consume their inputs only when they are ready to process
more. Such laziness leads to CPU underutilization, as com-
mands are often blocked when their consumers are not re-
questing any input. Consider the following fragment:

mkfifo t1 t2
grep "foo" f1 > t1 & grep "foo" f2 > t2 & cat t1 t2

The cat command will consume input from t2 only after it
completes reading from t1. As a result, the second grep will
remain blocked until the first grep completes (Fig. 7a).

To solve this, one might be tempted to replace FIFOs with
files, a central Unix abstraction, simulating pipes of arbitrary
buffering (Fig. 7b). Aside from severe performance implica-
tions, naive replacement can lead to subtle race conditions, as
a consumer may reach EOF before a producer. Alternatively,
consumers could wait for producers to complete before open-
ing the file for reading (Fig. 7c); however, this would insert
artificial barriers impeding task-based parallelism and wast-
ing disk resources—that is, this approach allows for data
parallelism to the detriment of task parallelism.
To address this challenge, PaSh inserts and instantiates

eager relay nodes at these points (Fig. 7d). These nodes fea-
ture tight multi-threaded loops that consume input eagerly
while attempting to push data to the output stream, forcing
upstream nodes to produce output when possible while also
preserving task-based parallelism. In PaSh’s evaluation (§6),
these primitives have the names presented in Fig. 7.
SplittingChallenges To offer data parallelism, PaSh needs
to split an input data stream to multiple chunks operated
upon in parallel. Such splitting is needed at least once at the
beginning of a parallel fragment, and possibly every time
within the parallel program when an aggregate function of a
stage merges data into a single stream.

cp

relaycp

f

f

c

<EOF>

f

cp
b

(a) No Eager  — (c) Blocking Eager  —
p

(b) Wrong Eager  ✘ (d) PaSh Eager  ✓

Fig. 7. Eager primitive. Addressing intermediary laziness is challenging:
(a) FIFOs are blocking; (b) files alone introduce race conditions between
producer/consumer; (c) files + wait inhibit task parallelism. Eager relay
nodes (d) address the challenge while remaining within the PaSh model.

To achieve this, PaSh’s transformations insert split nodes
that correspond to a custom split command. For split to be
effective, it needs to disperse its input uniformly. PaSh does
not do this in a round-robin fashion, as that would require
augmenting the data stream with additional metadata to
maintain FIFO ordering—a challenge for both performance
and correctness. PaSh instead splits chunks in-order, which
necessitates knowledge of the input size beforehand and
which is not always available. To address this challenge,
PaSh provides a split implementation that first consumes its
complete input, counts its lines, and then splits it uniformly
across the desired number of outputs. PaSh also inserts eager
relay nodes after all split outputs (except for the last one)
to address laziness as described above.
Dangling FIFOs and Zombie Producers Under normal
operation, a command exits after it has produced and sent all
its results to its output channel. If the channel is a pipe and
its reader exits early, the command is notified to stop writing
early. In Unix, this notification is achieved by an out-of-band
error mechanism: the operating system delivers a PIPE signal
to the producer, notifying it that the pipe’s consumer has
exited. This handling is different from the error handling
for other system calls and unusual compared to non-Unix
systems4 primarily because pipes and pipelines are at the
heart of Unix. Unfortunately though, if a pipe has not been
opened for writing yet, Unix cannot signal this condition.
Consider the following script:

mkfifo fifo1 fifo2
cat in1 > fifo1 & cat in2 > fifo2 &
cat fifo1 fifo2 | head -n 1 & wait

In the code above, head exits early causing the last cat to
exit before opening fifo2. As a result, the second cat never
receives a PIPE signal that its consumer exited—after all,
fifo2 never even had a consumer! This, in turn, leaves the
second cat unable to make progress, as it is both blocked
and unaware of its consumer exiting. Coupled with wait at
the end, the entire snippet reaches a deadlock.

This problem is not unique to PaSh; it occurs even when
manually parallelizing scripts using FIFOs (but not when us-
ing e.g., intermediary files, Cf. §5, Laziness). It is exacerbated,
however, by PaSh’s use of the cat fifo1 fifo2 construct,
used pervasively when parallelizing commands in S○.
4For example, Windows indicates errors for WriteFile using its return
code—similar to DeleteFile and other Win32 functions.
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Tab. 2. Summary of Unix one-liners. Structure summarizes the different classes of commands used in the script. Input and seq. time report on the input
size fed to the script and the timing of its sequential execution. Nodes and compile time report on PaSh’s resulting DFG size (which is equal to the number of
resulting processes and includes aggregators, eager, and split nodes) and compilation time for two indicative --widths.

Script Structure Input Seq. Time #Nodes(16, 64) Compile Time (16, 64) Highlights

nfa-regex 3 × S○ 1 GB 79m35.197s 49 193 0.056s 0.523s complex NFA regex
sort S○, P○ 10 GB 21m46.807s 77 317 0.090s 1.083s sorting
top-n 2 × S○, 4 × P○ 10 GB 78m45.872s 96 384 0.145s 1.790s double sort, uniq reduction
wf 3 × S○, 3 × P○ 10 GB 22m30.048s 96 384 0.147s 1.809s double sort, uniq reduction
spell 4 × S○, 3 × P○ 3 GB 25m7.560s 193 769 0.335s 4.560s comparisons (comm)
difference 2 × S○, 2 × P○, N○ 10 GB 25m49.097s 125 509 0.186s 2.341s non-parallelizable diffing
bi-grams 3 × S○, 3 × P○ 3 GB 38m9.922s 185 761 0.313s 4.310s stream shifting and merging
set-difference 5 × S○, 2 × P○, N○ 10 GB 51m32.313s 155 635 0.316s 4.358s two pipelines merging to a comm

sort-sort S○, 2 × P○ 10 GB 31m26.147s 154 634 0.293s 3.255s parallelizable P○ after P○
shortest-scripts 5 × S○, 2 × P○ 85 MB 28m45.900s 142 574 0.328s 4.657s long S○ pipeline ending with P○

Sequential

Blocking
Eager

PaSh
w/o split

PaSh

No Eager

Fig. 8. Runtime setup lattice. Parallel No Eager and Blocking Eager im-
prove over sequential, but are not directly comparable. PaSh w/o Split adds
PaSh’s optimized eager relay, and PaSh uses all primitives in §5 (Fig. 9).

To solve this problem, PaSh emits cleanup logic that oper-
ates from the end of the pipeline and towards its start. The
emitted code first gathers the IDs of the output processes
and passes them as parameters to wait; this causes wait to
block only on the output producers of the dataflow graph.
Right after wait, PaSh inserts a routine that delivers PIPE

signals to any remaining processes upstream.
Aggregator Implementations As discussed earlier, com-
mands in P○ can be parallelized using amap and an aggregate
stage (§3). PaSh implements aggregate for several commands
in P○ to enable parallelization. A few interesting examples
are aggregate functions for (i) sort, which amounts to the
merge phase of a merge-sort (and on GNU systems is im-
plemented as sort -m), (ii) uniq and uniq -c, which need to
check conditions at the boundary of their input streams, (iii)
tac, which consumes stream descriptors in reverse order,
and (iv) wc, which adds inputs with an arbitrary number of
elements (e.g., wc -lw or wc -lwc etc.). The aggregate func-
tions iterate over the provided stream descriptors, i.e., they
work with more than two inputs, and apply pure functions
at the boundaries of input streams (with the exception of
sort that has to interleave inputs).

6 Evaluation
This section reports on whether PaSh can indeed offer per-
formance benefits automatically and correctly using several
scripts collected out from the wild along with a few micro-
benchmarks for targeted comparisons.
Highlights This paragraph highlights results for width=16,
but PaSh’s evaluation reports on varying widths (2–64). Over-
all, applying PaSh to all 44 unmodified scripts accelerates

39 of them by 1.92–17.42×; for the rest, the parallel perfor-
mance is comparable to the sequential (0.89, 0.91, 0.94, 0.99,
1.01×). The total average speedup over all 44 benchmarks is
6.7×. PaSh’s runtime primitives offer significant benefits—for
the 10 scripts that we measured with and without the run-
time primitives they bump the average speedup from 5.9×
to 8.6×. PaSh significantly outperforms sort --parallel, a
hand-tuned parallel implementation, and performs better
than GNU parallel, which returns incorrect results if used
without care.

Using PaSh’s standard library of annotations for POSIX
and GNU commands (§3), the vast majority of programs
(> 40, with > 200 commands) require no effort to parallelize
other than invoking PaSh; only 6 (< 3%) commands, outside
this library, needed a single-record annotation (§6.4).

In terms of correctness, PaSh’s results on multi-GB inputs
are identical to the sequential ones. Scripts feature ample op-
portunities for breaking semantics (§6.5), which PaSh avoids.
Setup PaSh was run on 512GB of memory and 64 physi-
cal × 2.1GHz Intel Xeon E5-2683 cores, Debian 4.9.144-3.1,
GNU Coreutils 8.30-3, GNU Bash 5.0.3(1), and Python 3.7.3—
without any special configuration in hardware or software.
Except as otherwise noted, (i) all pipelines are set to (ini-
tially) read from and (finally) write to the file-system, (ii)
curl fetches data from a different physical host on the same
network connected by 1Gbps links.
We note a few characteristics of our setup that mini-

mize statistical non-determinism: (1) our evaluation exper-
iments take several hours to complete (about 23 hours for
the full set), (2) our experimental infrastructure is hosted on
premises, not shared with other groups or researchers, (3)
the runtime does not include any managed runtimes, virtu-
alization, or containment,5 (4) many commands are repeated
many times—for example, there are more than 40 instances
of grep in our benchmark set. The set of benchmarks also
executes with smaller inputs multiple times a week (using

5 While PaSh is available via Docker too, all results reported in this paper
are from non-containerized executions.
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Fig. 9. PaSh’s speedup for width=2–64. Different configurations per benchmark: (i) PaSh: the complete implementation with eager and split enabled, (ii)
PaSh w/o split: eager enabled (no split), (iii) Blocking Eager: only blocking eager enabled (no split), (iv) No Eager: both eager and split disabled. For
some pairs of configurations, PaSh produces identical parallel scripts and thus only one is shown.

continuous integration), reporting minimal statistical differ-
ences between runs.
Parallelism PaSh’s degree of parallelism is configured by
the --width flag (§4.3). PaSh does not control a script’s initial
parallelism (e.g., a command could spawn 10 processes), and
thus the resulting scripts often reach maximum paralleliza-
tion benefits with a value of width smaller than the physical
cores available in our setup (in our case 64).

6.1 Common Unix One-liners
We first evaluate PaSh on a set of popular, common, and clas-
sic Unix pipeline patterns [3, 4, 53]. The goal is to evaluate
performance benefits due to PaSh’s (i) DFG transformations
alone, including how --width affects speedup, and (ii) run-
time primitives, showing results for all points on the runtime
configuration lattice (Fig. 8).
Programs Tab. 2 summarizes the first collection of pro-
grams. NFA-Regex is centered around an expensive NFA-
based backtracking expression and all of its commands are
in S○. Sort is a short script centered around a P○ command.
Wf and Top-n are based on McIlroy’s classic word-counting
program [4]; they use sorting, rather than tabulation, to iden-
tify high-frequency terms in a corpus. Spell, based on the
original spell developed by Johnson [3], is another Unix
classic: after some preprocessing, it makes clever use of comm
to report words not in a dictionary. Shortest-scripts extracts
the 15 shortest scripts in the user’s PATH, using the file

utility and a higher-order wc via xargs [53, pg. 7]. Diff and
Set-diff compare streams via a diff (in N○, non-parallelizable)
and comm (in P○), respectively. Sort-sort uses consecutive P○
commands without interleaving them with commands that
condense their input size (e.g., uniq). Finally, Bi-grams repli-
cates and shifts a stream by one entry to calculate bigrams.
Results Fig. 9 presents PaSh’s speedup as a function of
width=2–64. Average speedups of the optimized PaSh, i.e.,

with eager and split enabled, for width={2, 4, 8, 16, 32, 64} are
{1.97, 3.5, 5.78, 8.83, 10.96, 13.47}×, respectively. For No Ea-
ger, i.e., PaSh’ transformations without its runtime support,
speedups drop to 1.63, 2.54, 3.86, 5.93, 7.46, 9.35×.
Plots do not include lines for configurations that lead to

identical parallel programs. There are two types of such cases.
In the first, the PaSh (blue) and PaSh w/o Split (red, hidden)
lines are identical for scripts where PaSh does not add split,
as the width of the DFG is constant; conversely, when both
lines are shown (e.g., Spell, Bi-grams, and Sort), PaSh has
added splits due to changes in the DFG width (e.g. due to
a N○ command). In the second type, Pash w/o Split (red) is
identical to No Eager (green, hidden) and Blocking Eager
(orange, hidden) because the input script features a com-
mand in P○ or N○ relatively early. This command requires
an aggregator, whose output is of width 1, beyond which
PaSh w/o Split configurations are sequential and thus see no
speedup. Finally, Tab. 2 shows that PaSh’s transformation
time is negligible, and its COST [35], i.e., the degree of paral-
lelism threshold over which PaSh starts providing absolute
execution time benefits, is 2.
Discussion As expected, scripts with commands only in
S○ see linear speedup. PaSh’s split benefits scripts with P○
or N○ commands, without negative effects on the rest. PaSh’s
eager primitive improves over No Eager and Blocking Eager
for all scripts. No Eager is usually faster than Blocking Ea-
ger since it allows its producer and consumer to execute in
parallel. Sort-sort illustrates the full spectrum of primitives:
(i) PaSh w/o Split offers benefits despite the lack of split be-
cause it fully parallelizes the first sort, and (ii) PaSh gets full
benefits because splitting allows parallelizing the second
sort too.
As described earlier, PaSh often achieves the maximum

possible speedup for a width that is lower than the number
of available cores—i.e., width=16–32 for a 64-core system.
This is also because PaSh’s runtime primitives spawn new
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processes—e.g., Sort with width=8 spawns 37 processes: 8 tr,
8 sort, 7 aggregate, and 14 eager processes.
Take-aways PaSh accelerates scripts by up to 60×, de-
pending on the characteristics of the commands involved
in a script. Its runtime constructs improve over the baseline
speedup achieved by its parallelization transformations.

6.2 Unix50 from Bell Labs
We now turn to a set of Unix pipelines found out in the wild.
Programs In a recent celebration of Unix’s 50-year legacy,
Bell Labs created 37 challenges [29] solvable byUnix pipelines.
The problems were designed to highlight Unix’s modular
philosophy [33]. We found unofficial solutions to all-but-
three problems on GitHub [5], expressed as pipelines with
2–12 stages (avg.: 5.58). They make extensive use of standard
commands under a variety of flags, and appear to be written
by non-experts (contrary to §6.1, they often use sub-optimal
or non-Unix-y constructs). PaSh executes each pipeline as-is,
without any modification.
Results Fig. 10 shows the speedup (left) over the sequential
runtime (right) for 31 pipelines, with width=16 and 10GB
inputs. It does not include 3 pipelines that use head fairly
early thereby finishing execution in under 0.1 seconds. We
refer to each pipeline using its x-axis index (#0–30) in Fig. 10.
Average speedup is 6.02×, and weighted average (with the
absolute times as weights) is 5.75×.
Discussion Most pipelines see significant speedup, ex-
cept #25-30 that see no speedup because they contain gen-
eral commands that PaSh cannot parallelize without risking
breakage—e.g., awk and sed -d. A Unix expert would no-
tice that some of them can be replaced with Unix-specific
commands—e.g., awk "{print \$2, \$0}" | sort -nr, used
to sort on the second field can be replaced with a single
sort -nr -k 2 (#26). The targeted expressiveness of the re-
placement commands can be exploited by PaSh—in this spe-
cific case, achieving 8.1× speedup (vs. the original 1.01×).
For all other scripts (#0–24), PaSh’s speedup is capped

due to a combination of reasons: (i) scripts contain pure
commands that are parallelizable but don’t scale linearly,
such as sort (#5, 6, 7, 8, 9, 19, 20, 21, 23, 24), (ii) scripts are
deep pipelines that already exploit task parallelism (#4, 10,
11, 13, 15, 17, 19, 21, 22), or (iii) scripts are not CPU-intensive,
resulting in pronounced I/O and constant costs (#3, 4, 11, 12,
14, 16, 17, 18, 22).
Take-aways PaSh accelerates unmodified pipelines found
in the wild; small tweaks can yield further improvements,
showing that PaSh-awareness and scripting expertise can
improve performance. Furthermore, PaSh does not signifi-
cantly decelerate non-parallelizable scripts.

6.3 Use Case: NOAA Weather Analysis
We now turn our attention to Fig. 2’s script (§2).
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Fig. 10. Unix50 scripts. Speedup (left axis) over sequential execution (right
axis) for Unix50 scripts. Parallelism is 16× on 10GB of input data (Cf.§6.2).
Pipelines are sorted in descending speedup order.

Program This program is inspired by the central example
in “Hadoop: The Definitive Guide” [59, §2], where it exempli-
fies a realistic analytics pipeline comprising 3 stages: fetch
NOAAdata (shell), convert them to aHadoop-friendly format
(shell), and calculate the maximum temperature (Hadoop).
While the book focuses only on the last stage, PaSh paral-
lelizes the entire pipeline.
Results The complete pipeline executes in 44m2s for five
years (82GB) of data. PaSh with width=16 leads to 2.52×
speedup, with different phases seeing different benefits: 2.04×
speedup (vs. 33m58s) for all the pre-processing (75% of the
total running time) and 12.31× speedup (vs. 10m4s) for com-
puting the maximum.
Discussion The speedup of the preprocessing phase of
the pipeline is bound by the network and I/O costs since
curl downloads 82GB of data. However, the speedup for
the processing phase (CPU-bound) is 12.31×, much higher
than what would be achieved by parallelizing per year (for
a total of five years). Similar to Unix50 (§6.2), we found
that large pipelines enable significant freedom in terms of
expressiveness.
Take-aways PaSh can be applied to programs of notable
size and complexity to offer significant acceleration. PaSh
is also able to extract parallelism from fragments that are
not purely compute-intensive, i.e., the usual focus of conven-
tional parallelization systems.

6.4 Use Case: Wikipedia Web Indexing
We now apply PaSh to a large web-indexing script.
Program This script reads a file containing Wikipedia
URLs, downloads the pages, extracts the text from HTML,
and applies natural-language processing—e.g., trigrams, char-
acter conversion, term frequencies—to index it. It totals 34
commands written in multiple programming languages.
Results The original script takes 191min to execute on 1%
of Wikipedia (1.3GB). With width=16, PaSh brings it down
to 15min (12.7×), with the majority of the speedup coming
from the HTML-to-text conversion.
Discussion The original script contains 34 pipeline stages,
thus the sequential version already benefits from task-based
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parallelism. It also uses several utilities not part of the stan-
dard POSIX/GNU set—e.g., its url-extraction is written in
JavaScript and its word-stemming is in Python. PaSh can still
operate on them as their parallelizability properties— S○ for
url-extract and word-stem—can be trivially described by an-
notations. Several other stages are in S○ allowing PaSh to
achieve benefits by exposing data parallelism.
Take-aways PaSh operates on programs with (annotated)
commands outside the POSIX/GNU subsets and leads to
notable speedups, even when the original program features
significant task-based parallelism.

6.5 Further Micro-benchmarks
As there are no prior systems directly comparable to PaSh,
we now draw comparisons with two specialized cases that
excel within smaller fragments of PaSh’s proposed domain.
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Pash - No Eager
sort --parallel

Parallel Sort First,
we compare a sort

parallelized by PaSh
(Sp ) against the same
sort invoked using
the --parallel flag
set (Sд).6 While the
--parallel flag is not
a general solution, the comparison serves to establish a
baseline for PaSh. Sд ’s parallelism is configured to 2× that
of Sp ’s --width (i.e., the rightmost plot point for Sд is for
--parallelism=128), to account for PaSh’s additional run-
time processes.

A few points are worth noting. Sp without eager performs
comparably to Sд , and with eager it outperforms Sд (∼ 2×);
this is because eager adds intermediate buffers that ensure
CPU utilization is high. Sд indicates that sort’s scalability is
inherently limited (i.e., due to sort, not PaSh); this is why
all scripts that contain sort (e.g., §6.1–6.4) are capped at 8×
speedup. The comparison also shows PaSh’s benefits to com-
mand developers: a low-effort parallelizability annotation
achieves better scalability than a custom flag (and underlying
parallel implementation) manually added by developers.
GNU Parallel We compare PaSh to parallel (v.20160422),
a GNU utility for running other commands in parallel [52],
on a small bio-informatics script. Sequential execution takes
554.8s vs. PaSh’s 128.5s (4.3×), with most of the overhead
coming from a single command—cutadapt.
There are a few possible ways users might attempt to

use GNU parallel on this program. They could use it on
the bottleneck stage, assuming they can deduce it, bring-
ing execution down to 304.4s (1.8× speedup). Alternatively,
they could (incorrectly) sprinkle parallel across the entire
program. This would lead to 3.2× performance improve-
ments but incorrect results with respect to the sequential
6 Both sorts use the same buffer size internally [44].

execution—with 92% of the output showing a difference be-
tween sequential and parallel execution. PaSh’s conservative
program transformations are not applied in program frag-
ments with unclear parallelizability properties.

7 Related Work
Existing techniques for exploiting parallelism are not directly
comparable to PaSh, because they either require significantly
more user effort (see §1 for the distinction between users and
developers) or are too specialized, targeting narrow domains
or custom programming abstractions.
Parallel Shell Scripting Utilities exposing parallelism on
modern Unixes—e.g., qsub [14], SLURM [60], parallel [52]—
are limited to embarrassingly parallel (and short) programs
and are predicated upon explicit and careful user invoca-
tion: users have to navigate through a vast array of different
configurations, flags, and modes of invocation to achieve par-
allelization without jeopardizing correctness. For example,
parallel contains flags such as --skip-first-line, -trim,
and --xargs, and introduces (and depends on) other pro-
grams with complex semantics, such as ones for SQL query-
ing and CSV parsing. In contrast, PaShmanages to parallelize
large scripts correctly with minimal-to-zero user effort.
Several shells [10, 32, 49] add primitives for non-linear

pipe topologies—some of which target parallelism. Here too,
however, users are expected to manually rewrite scripts to
exploit these new primitives, contrary to PaSh.
Recently, Greenberg [17] argued that the shell and its

constructs can be seen as a DSL for orchestrating concurrent
processes. PaSh’s extraction of dataflow regions is based on
a similar observation, but its central focus is on achieving
data parallelism from these dataflow regions automatically.
Developed concurrently with PaSh, the Process-Offload

SHell (POSH) [45] is a shell and runtime that automatically
reduces data movement when running shell pipelines on
data stored in remote storage á la NFS. POSH accelerates
I/O-heavy pipelines that access files in remote filesystems,
by offloading computation to servers closer to the data. PaSh
is a shell-to-shell compiler that parallelizes Unix shell scripts
running on a single multi-processor machine by transform-
ing them to DFGs, applying transformations, and then trans-
forming them back to parallel shell scripts augmented with
PaSh’s runtime primitives that are executed on the user’s
shell. Both PaSh and POSH observe that Unix commands
can have arbitrary behaviors (§2.2), thus each introducing
an annotation language that fits its problem: POSH uses an-
notations to identify which files are accessed by a pipeline,
and thus co-locates commands and their dependencies; PaSh
uses annotations to identify whether a command is paral-
lelizable and, if so, how to translate it to a dataflow node.
Both systems descend from a lineage of annotation-based
black-box transformations [41, 54, 55, 61].
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Low-level Parallelization There exists significant work
on automating parallelization at the instruction level, start-
ing with explicit DOALL and DOACROSS annotations [7, 30] and
continuing with compilers that attempt to automatically ex-
tract parallelism [19, 40]. These efforts operate at a lower
level than PaSh (e.g., that of instructions or loops rather than
the boundaries of programs that are part of a script), within
a single-language or single-target environments, and require
source modifications.

More recent work focuses on extracting parallelism from
domain-specific programming models [13, 15, 28] and inter-
active parallelization tools [24, 26]. These tools simplify the
expression of parallelism, but still require significant user
involvement in discovering and exposing parallelism.
Correct Parallelization of Dataflow Graphs The DFG
is a prevalent model in several areas of data processing, in-
cluding batch- [9, 62] and stream-processing [8, 37]. Systems
implementing DFGs often perform optimizations that are
correct given subtle assumptions on the dataflow nodes that
do not always hold, introducing erroneous behaviors. Re-
cent work [21, 25, 31, 47] attempts to address this issue by
performing optimizations only in cases where correctness is
preserved, or by testing that applied optimizations preserve
the original behavior. PaSh draws inspiration from these
efforts, in that it delegates the satisfaction of assumptions
to the annotation writers, who are expected to be command
developers rather than shell users (§1), ensuring that trans-
formations preserve the behavior of the original dataflow. Its
DFG model, however, is different from earlier efforts in that
it explicitly captures and manipulates ordering constraints.
The constraints are due to the intricacies of the Unixmodel—
e.g., FIFO streams, argument processing, and concatenation
operators.
Parallel Userspace Environments By focusing on sim-
plifying the development of distributed programs, a plethora
of environments additionally assist in the construction of par-
allel software. Such systems [1, 36, 39], languages [27, 48, 58],
or system-language hybrids [11, 43, 56] hide many of the
challenges of dealing with concurrency as long as developers
leverage the provided abstractions—which are strongly cou-
pled to the underlying operating or runtime system. Even
shell-oriented efforts such as Plan9’s rc are not backward-
compatible with the Unix shell, and often focus primarily
on hiding the existence of a network rather than automating
parallel processing.
Parallel Frameworks Several frameworks [2, 6, 12, 16, 51]
offer fully automated parallelism as long as special primitives
are used—e.g., map-reduce-style primitives for Phoenix [51].
These primitives make strong assumptions about the nature
of the computation—e.g., commutative and associative ag-
gregation functions that can be applied on their inputs in
any order. By targeting specific classes of computation (viz.
PaSh’s parallelizability), these primitives are significantly

optimized for their target domains. PaSh instead chooses an
approach that is better tailored to the shell: it does not require
rewriting parts of a shell script using specific parallelization-
friendly primitives, but rather lifts arbitrary commands to
a parallelization-friendly space using an annotation frame-
work.

Dryad [23] is a distributed system for dataflow graphs.
Dryad offers a scripting language, Nebula, that allows us-
ing shell commands such as grep or sed in place of indi-
vidual dataflow nodes. The main difference with PaSh is
that in Dryad the programmer needs to explicitly express
the dataflow graph, which is then executed in a distributed
fashion, whereas PaSh automatically parallelizes a given
shell script by producing a parallel script that runs on an
unmodified shell of choice.

8 Conclusion
Shell programs are ubiquitous, use blockswritten in a plethora
of programming languages, and spend a significant fraction
of their time interacting with the broader environment to
download, extract, and process data—falling outside the focus
of conventional parallelization systems. This paper presents
PaSh, a system that allows shell users to parallelize shell
programs mostly automatically. PaSh can be viewed as (i) a
source-to-source compiler that transforms scripts to DFGs,
parallelizes them, and transforms them back to scripts, cou-
pled with (ii) a runtime component that addresses several
practical challenges related to performance and correctness.
PaSh’s extensive evaluation over 44 unmodified Unix scripts
demonstrates non-trivial speedups (0.89–61.1×, avg: 6.7×).
PaSh’s implementation, as well as all the example code

and benchmarks presented in this paper, are all open source
and available for download: github.com/andromeda/pash.
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A Annotation for the Command cut
The code below shows the full annotation for cut.
{ "command": "cut",

"cases": [
{ "predicate": {

"operator": "or",
"operands": [

{ "operator": "val_opt_eq",
"operands": [ "-d", "\n" ] },

{ "operator": "exists",
"operands": [ "-z" ] }

]
},
"class": "pure",
"inputs": [ "args[:]" ],
"outputs": [ "stdout" ]

},
{ "predicate": "default",

"class": "stateless",
"inputs": [ "args[:]" ],
"outputs": [ "stdout" ]

}
],
"options": [ "stdin-hyphen", "empty-args-stdin" ],
"short-long": [

{ "short": "-d", "long": "--delimiter" },
{ "short": "-z", "long": "--zero-terminated" }

]
}

B Artifact Appendix

Summary The artifact consists of several parts: (i) a mirror
of PaSh’ GitHub repository (git commit e5f56ec, available
permanently in branch eurosys-2021-aec-frozen) includ-
ing annotations, the parallelizing compiler, and the runtime
primitives presented in this paper; (ii) instructions for pulling
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Tab. 3. Major experiments presented in the paper. There are four
major experiments presented in the paper: (i) Common Unix one-liners, (ii)
Unix50 from Bell Labs, (iii) NOAA Weather Analysis, and (iv) Wikipedia
Web Indexing.

Experiment Section Location

Common Unix one-liners §6.1 https://git.io/JYi9m
Unix50 from Bell Labs §6.2 https://git.io/JYi9n
NOAA Weather Analysis §6.3 https://git.io/JYi9C
Wikipedia Web Indexing §6.4 https://git.io/JYi98

code and experiments, building from source, preparing the
environment, and running the experiments; (iii) a 20-minute
video walk-through of the entire artifact; and (iv) instruc-
tions for directly pulling a pre-built Docker container and
building a Docker image from scratch; (v) scripts, descrip-
tions, and instructions to run the experiments (automatically
or manually) to reproduce the graphs and results presented
in the paper.
Codebase information Below is a summary of key infor-
mation about PaSh’s repository:
• Repository: https://github.com/andromeda/pash
• License: MIT
• Stats: 2,278 commits, from 14 contributors

Artifact requirements Below is a summary of require-
ments for running PaSh and its evaluation experiments:
• CPU: a modern multi-processor, to show performance
results (the more cpus, the merrier)

• Disk: about 10GB for small-input (quick) evaluation, about
100GB+ for full evaluation

• Software: Python 3.5+, Ocaml 4.05.0, Bash 5+, and GNU
Coreutils (details below)

• Time: about 30min for small-input, about 24h for full eval-
uation

Dependencies The artifact depends on several packages;
on Ubuntu 18.04: libtool, m4, automake, opam, pkg-config,
libffi-dev, python3, python3-pip, wamerican-insane, bc, bs-
dmainutils, curl, and wget. PaSh and its experimental and
plotting infrastructure make use of the following Python
packages: jsonpickle, PyYAML, numpy, matplotlib. Exper-
iments and workloads have their own dependencies—e.g.,
pandoc-2.2.1, nodejs, and npm (Web indexing), or p7zip-full
(Wikipedia dataset).
Access PaSh is available via several means, including:
• Git: git clone git@github.com:andromeda/pash.git

• Docker: curl img.pash.ndr.md | docker load

• HTTP: wget pkg.pash.ndr.md

• Shell: curl -s up.pash.ndr.md | sh

Code Structure This repo hosts the core PaSh develop-
ment. The artifact’s directory structure is as follows:
• annotations: Parallelizability study and associated com-
mand annotations.

• compiler: Shell-dataflow translations and associated par-
allelization transformations.

• docs: Design documents, tutorials, installation instruc-
tions, etc.

• evaluation: Shell pipelines and example scripts used in the
evaluation of PaSh.

• runtime: Runtime component—e.g., eager, split, and asso-
ciated aggregators.

• scripts: Scripts related to installation, continuous integra-
tion, deployment, and testing.

CallingPaSh To parallelize a script hello-world.shwith
a parallelization degree of 2, from the top-level directory of
the repository run:

./pa.sh hello-world.sh

PaSh will compile and execute hello-world.sh on the fly.
Tutorial To go through a longer tutorial, see docs/tutorial.
Available subcommands Run ./pa.sh --help to getmore
information about the available PaSh subcommands:
Usage: pa.sh [-h] [--preprocess_only] [--output_preprocessed]

[-c COMMAND] [-w WIDTH] [--no_optimize]
[--dry_run_compiler] [--assert_compiler_success]
[-t] [-p] [-d DEBUG] [--log_file LOG_FILE]
[--no_eager] [--speculation {no_spec,quick_abort}]
[--termination {clean_up_graph,drain_stream}]
[--config_path CONFIG_PATH] [-v] [input]

Positional arguments:
input The script to be compiled and executed.

optional arguments:
-h, --help

Show this help message and exit.
--preprocess_only

Pre-process (not execute) input script.
--output_preprocessed

Output the preprocessed script.
-c COMMAND, --command COMMAND

Evaluate the following COMMAND as a
script, rather than a file.

-w WIDTH, --width WIDTH
Set degree of data-parallelism.

--no_optimize
Not apply transformations over the DFG.

--dry_run_compiler
Not execute the compiled script, even
if the compiler succeeded.

--assert_compiler_success
Assert that the compiler succeeded
(used to make tests more robust).

-t, --output_time
Output the time it took for every step.

-p, --output_optimized
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Output the parallel script for inspection.
-d DEBUG, --debug DEBUG

Configure debug level; defaults to 0.
--log_file LOG_FILE

Location of log file; defaults to stderr.
--no_eager

Disable eager nodes before merging nodes.
--termination {clean_up_graph,drain_stream}

Determine the termination behavior of the
DFG. Defaults to cleanup after the last
process dies, but can drain all streams
until depletion.

--config_path CONFIG_PATH
Determine the config file path, by
default 'PASH_TOP/compiler/config.yaml'.

-v, --version Show program's version number and exit

18

66


	Abstract
	1 Introduction
	2 Background and Overview
	2.1 Running Example: Weather Analysis
	2.2 Parallelization Challenges
	2.3 PaSh Design Overview

	3 Parallelizability Classes
	3.1 Parallelizability of Standard Libraries
	3.2 Extensibility Framework

	4 Dataflow Graph Model
	4.1 Frontend: From a Sequential Script to DFGs
	4.2 Dataflow Model Definitions
	4.3 Graph Transformations
	4.4 Backend: From DFGs to a Parallel Shell Script

	5 Runtime
	6 Evaluation
	6.1 Common Unix One-liners
	6.2 Unix50 from Bell Labs
	6.3 Use Case: NOAA Weather Analysis
	6.4 Use Case: Wikipedia Web Indexing
	6.5 Further Micro-benchmarks

	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Annotation for the Command cut
	B Artifact Appendix



