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Abstract
Microservices are increasingly central for cloud applica-

tions due to their flexibility and support for rapid integra-
tion and deployment. However, applications often experience
overload or sudden traffic surges that exceed service capacity,
resulting in increased latency or service failures. Moreover,
microservices are decentralized, interdependent, and multi-
plexed, exacerbating risks from overload.

We present RAJOMON, a market-based overload control
system for large microservice graphs. RAJOMON controls
overload through distributed rate-limiting and load shedding.
Clients attach tokens to requests and services charge a price
for each API, dropping requests with insufficient tokens. To-
kens and prices propagate through the entire call graph, pig-
gybacking on requests and responses. Thus, RAJOMON is the
first decentralized, end-to-end overload control system.

We implement and evaluate RAJOMON on a setup of up to
140 cores and on a variety of applications from academia and
industry. Experiments indicate RAJOMON protects microser-
vice goodput and tail latency from substantial demand spikes,
even in the case of mixed request types and deeper service
graphs. For high-load scenarios, RAJOMON reduces tail la-
tency by 78% and increases goodput by 45% when compared
against state-of-the-art overload control for microservices.

1 Introduction

Microservices enable extensible and flexible software archi-
tectures, advantages that have led to their adoption in many
large, production systems [6, 7]. Effectively managing over-
load, where demand exceeds the system’s capacity for com-
putation, is essential for performance and reliability. Demand
spikes might arise from expected events, such as sales or hol-
idays, or unpredictable variations in client behavior. Supply
inefficiencies might arise from hardware issues, such as power
throttling, or software issues such as system misconfiguration
or garbage collection. Overload can severely degrade user
experience and system reliability [3, 52]. It is the principal
culprit for cascading failures within service graphs [2].

Microservice applications, compared to monolithic sys-
tems, have several characteristics that make overload control
more challenging. First, microservices are deployed automat-
ically and managed in a decentralized manner [19]. Second,
microservices are highly interdependent, creating the risk that
congestion at one node can propagate along the execution
path, turning localized overload into cascading failures [13].
Finally, microservice nodes are often multiplexed, serving
multiple request interfaces. Each interface may involve differ-
ent downstream call graphs but share the same nodes, making
it difficult to detect which interfaces are overloaded [24, 25].

An effective, responsive overload control framework should
incorporate three elements: (1) decentralized detection and
decisions to improve responsiveness; (2) coordination across
the call graph to control load early in the execution path,
ideally at client side; and (3) the ability to distinguish and
manage overload at interface granularity.

Current systems handle request surges with load shedding
and rate limiting (Table 1), but they do not provide the key el-
ements for effective overload control. Centralized approaches
struggle to respond to overload in a timely manner because
they rely on extensive telemetry and computation [34]. With-
out coordination across the call graph, many requests are
processed by some nodes and dropped by others, wasting
computational resources and lengthening queues. [52]. With-
out interface granularity, overloaded and idle interfaces are
treated equally, causing head-of-line blocking and dropping
requests [3]. These limitations hinder the practical deploy-
ment of previously proposed frameworks.

We respond to these challenges and propose RAJOMON to
achieve key desiderata with tokens and price tables. Clients
are granted tokens at predefined rates, and these tokens are
attached to each request and its sub-requests. Each microser-
vice maintains a table of prices, which specify the number
of tokens required for an interface. First, RAJOMON decen-
tralizes overload control as clients rate limit themselves when
their token holdings are insufficient while services reject re-
quests with insufficient tokens. Second, RAJOMON coordi-
nates control across the microservice graph without extra



Frameworks Decentral- Coordi- Client Rate Interface Time
ization nation Limiting Granularity Scale

Dagor ✓ Pair-wise ✗ ✓ 1s
Breakwater ✗ ✗ ✓ ✗ < 1ms
BreakwaterD ✓ ✗ ✓ ✗ < 1ms
TopFull ✗ ✓ ✗ ✓ 10s
Rajomon ✓ ✓ ✓ ✓ < 1s

Table 1: Related work of microservice overload control, with
time scales represented in seconds (s) and milliseconds (ms).

network overheads. When a service experiences overload,
it increases prices and attaches updated prices to responses,
thereby informing upstream services and end-users about
congestion, who then proactively limit new requests before
they are issued to overloaded execution paths. Finally, prices
are updated independently for each interface based on their
downstream interfaces, ensuring that overloaded interfaces
are properly throttled while idle ones remain unaffected.

RAJOMON is designed and implemented as a gRPC inter-
ceptor package that does not modify application code [5]; we
will release the source code. We evaluate RAJOMON using
service graphs, with varied depths and sizes, from academic
benchmarks and industrial traces. Compared to state-of-the-
art baselines [3, 34, 52], RAJOMON improves goodput (i.e.,
throughput within latency requirements) by 117–266% and
reduces latency by 33–46% under challenging system con-
ditions. When traffic surges, RAJOMON goodput recovers
within a second, four times faster than baselines. RAJOMON’s
differentiates between concurrent requests across different
interfaces, increasing goodput by 45–245% and reducing la-
tency by 78–94%.

2 Motivation

Overload occurs when computational demands exceed sys-
tem capacity, causing requests to queue, violate service-level
obligations, or crash the service. For instance, the release of
Taylor Swift’s ‘Midnights’ album drew overwhelming traffic
and caused a global outage of Apple Music and Spotify [15].
Another example is Coinbase’s Super Bowl ad, which crashed
its own website [37]. Such outages cause financial losses and
harm user experience; 61% of users immediately turn to com-
petitors when they have difficulty accessing websites [17].

We motivate an overload control framework that targets
microservice-based applications, detailing their characteris-
tics that lead to unique challenges. We address these chal-
lenges by specifying desiderata for the control framework.
We also describe limitations of existing solutions.

2.1 Microservices
An application structured using microservices breaks down
functionality into separate components, each of which is im-

plemented in its own service [13, 25]. Each service provides
an interface (API) that supports specific requests and commu-
nicates with other services, through remote procedure calls
(RPCs), to perform an end-to-end task. By tracking services
invoked for the task, we can construct a call graph. Several
properties of the microservice computation – decentralized op-
eration, interdependent requests, multiplexed services – pose
significant challenges for overload control.

Decentralized Operation. Microservices are loosely cou-
pled, through RPCs, and each is usually implemented, main-
tained, and managed by a different organization or team [19].
This decentralized structure makes traditional, monolithic
overload control methods impractical because there is no
single entity that has ownership or visibility over all ser-
vices. Furthermore, large microservice applications tend to
include hundreds or even thousands of services [25]. At this
scale, even distributed tracing incurs significant delays. For in-
stance, Dapper takes up to 15 seconds to propagate trace data,
while Jaeger also operates asynchronously, adding further de-
lay [11, 36]. As a result, centralized control mechanisms are
unable to respond quickly enough because they first need to
observe the state of all services.

Interdependent Requests. Microservice-based applications
have graph structures with complex dependencies. According
to Alibaba, 30% of graphs are wide and exhibit a fan-out
pattern in which a service calls many others [24]. Many
other graphs are deep and exhibit long chains of services. An
overloaded service can cause cascading quality-of-service
violations throughout the graph [13]. When an upstream node
exhibits increased queuing delay, request queues have already
lengthened in downstream nodes [25].

Multiplexed Services. Services are often multiplexed and
shared by multiple applications and types of requests, which
invoke different application programming interfaces (APIs).
Approximately 90% of call graphs contain multiplexed ser-
vices that are included in other call graphs and interact with
various upstream and downstream services [24,26]. With such
multiplexing, one type of request might overload a shared
service, causing head-of-line blocking and affecting the pro-
cessing of other non-overloaded interfaces [25]. On the other
hand, overload control actions suitable for one interface could
be too conservative and starve other interfaces [34]. Deter-
mining the optimal rate for concurrent APIs given the varying
capacities of downstream servers is challenging.

2.2 Control Desiderata
We design and implement RAJOMON to address the unique
challenges from microservices. Our framework supports three
key properties for effective overload control.

Decentralized Decisions. Every client rate limits and every
service sheds load independently. Decentralized decisions re-
quire exchanging and propagating load signals. Yet no service



blocks on communication or commands from other services,
ensuring timely reaction to overload.

Coordinated Control. Services propagate load metadata,
recursively and eventually, to upstream services and clients.
Metadata flows through the microservice graph based on paths
taken by varied request types. Thus, services are aware of
downstream overload and proactively reduce the rate of up-
stream requests. Such collaborative load shedding reduces
wasted computation throughout the graph.1

Interface Granularity. Clients and services monitor and
control overload for each interface separately. Control at inter-
face granularity is more efficient than prior approaches, which
operate at client granularity [3], because overload often oc-
curs at specific interfaces rather than broad services or certain
clients. RAJOMON applies rate limits and active queue man-
agement differently for each request type. Its approach can
be viewed as virtual multi-queues for head-of-line blocking
in the microservice context.

2.3 Existing Approaches

There exist several established approaches for overload con-
trol, but none adequately address the challenges inherent to
microservice-based applications, as shown in Table 1.

Dagor implements decentralized overload control [52].
Each server monitors its queuing delay to determine the ad-
mission level. Dagor attaches a priority score to each request
and expresses admission level as a priority cut-off. Each server
drops requests that fail to meet this cut-off. Services commu-
nicate admission levels to their senders so that load is shed
one tier before hotspots within the graph.

Breakwater implements single-layer overload control to
manage interactions between one server and its clients [3].
The front-end service adjusts total credits based on queu-
ing delays and then issues credits to each client to explicitly
control the number of requests they can send. The front-end
increases server utilization by over-issuing credits and then
dropping requests when the excess of credits overload the
server.

TopFull is an adaptive overload control framework for
microservice applications that operates in a top-down man-
ner [34]. It dynamically controls API load by adjusting re-
quest rates at the front-end. It first clusters APIs according
to their graph structure and shared nodes. For each cluster,
reinforcement learning throttles requests at API granularity
based on observed end-to-end goodput and latencies.

Empirical Comparison. For motivation, Figure 1 presents
throughput, dropped requests, and total demand for the Com-
pose Post request in a social network application. Initially, all

1Note that Dagor also implements collaborative load shedding, but does
so between single sender-receiver pairs, which limits scalability to larger
applications [52].
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Figure 2: RAJOMON architecture.

frameworks are able to match goodput to total demand. But
when demand spikes at 5 seconds, performance degrades.

Dagor lacks end-to-end coordination, shedding load only
at nodes that precede hotpsots in the graph. This wastes re-
sources and slows response time as many requests are pro-
cessed by other services but are ultimately dropped. Breakwa-
ter, enabled only at the front-end, is unaware of real-time load
conditions at downstream services such that overload causes
service failure for 2 seconds. Moreover, Breakwater’s deci-
sions are misaligned with actual back-end capacities, leading
to incorrect rate limits and causing half of requests to violate
service-level obligations. TopFull’s centralized reinforcement
learning policy also experiences service failure for 4 seconds.
Although it eventually recovers, communication and compu-
tation overheads delay system adaptation.

3 RAJOMON Design

Tokens function as a universal currency for computations
requested by a sender (clients or upstream services) from a
receiver (downstream services). Unlike conventional token
bucket systems, RAJOMON’s tokens accompany requests as
they traverse the call graph. From the sender’s perspective,
tokens dictate each client’s capacity to send requests. From the
receiver’s perspective, tokens signify each request’s relative
priority and enable collective agreement on which requests to
shed first during overload (i.e., those with fewer tokens).

RAJOMON employs tokens for two reasons. For clients,
tokens permit differentiated rate limiting, which is important
for microservices with multiple interfaces and diverse load
dynamics at each interface. Clients should issue different



request types at different rates.
For services, tokens permit coordinated load shedding,

which is important for efficiency. Applications often exhibit
wide fan-outs in which one node in the call graph issues
requests to and waits for multiple downstream nodes [24].
When load shedding is required, downstream nodes should
coordinate and drop all sub-requests originating from the
same request. Because all sub-requests must complete, the
system need not compute for some when others are dropped.
Tokens, attached to requests, provide the needed metadata
about the original request and avoid additional communica-
tion for coordinated load shedding.

Prices represent the current demand and supply of com-
putational resources at each service. Practically, prices set a
threshold for the number of tokens required for a request’s
admission. Prices rise to curtail admissions during overload
and fall when load eases. Prices propagate from downstream
nodes toward clients, providing updated signals about sys-
tem load to all services in the graph. A price is set for each
interface. A table holds all prices for a service’s interfaces.

Prices are necessary for sharing congestion information
across nodes. Because each service interface calls different
downstream services, its computational capacity depends on
related downstream capacities. Determining whether a partic-
ular interface is overloaded requires callees that share their
congestion levels with callers. Prices permit this coordination
and decentralized overload control at interface granularity.

Controllers. Each node runs a local RAJOMON controller
(Figure 2). The Client-Side Controller prevents clients from
overwhelming the system by regulating the rate of outgoing
requests. It generates tokens at a rate defined by its policy.
Before a client issues a request, its controller ensures sufficient
tokens are available for the corresponding interface. If not,
it rate-limits and drops the request. Otherwise, it removes
tokens from its pool and attaches them to the outgoing request.
Periodically, the controller updates its price table based on
the latest information received from the server.

The Server-Side Controller performs admission control,
comparing tokens attached to incoming requests with the
price of the requested interface. If tokens are insufficient, the
request is dropped. Otherwise, the request is admitted and
tokens are attached to any subsequent requests sent to down-
stream services. The controller periodically updates prices
based on local queuing delays and feedback from downstream
services to reflect the graph’s current load conditions. Price up-
dates are communicated back to upstream services and clients
as part of the response metadata. Thus, controllers indepen-
dently assess and manage load for each call path, enabling
decentralized yet coordinated adaptive queue management.

3.1 Mechanisms for Overload Detection

The visibility of load conditions is limited because tasks re-
quire computation across many microservices loosely con-

nected by RPCs. Measuring resource availability and service
capacity is complicated by diverse graph topologies and re-
quest types. Simple indicators for overload in a single server,
such as CPU utilization or queuing delay [3,52], do not apply.

RAJOMON supports decentralized overload detection for
loosely connected services. A service calculates its price for
computation based on local queuing delays. Each of its in-
terfaces sets its own price, allowing the system to track and
manage congestion separately. Moreover, to capture end-to-
end load conditions and quantify the total price a request must
pay, prices accumulate from back-end services to clients.

When a service receives a price update from downstream
callees, it updates the total price and shares with upstream
callers. This backward propagation of prices informs clients
and callers of the overload status for all downstream inter-
faces. Prices circulate asynchronously without requiring a
centralized message broker.

3.2 Mechanisms for Overload Control
Each RAJOMON controller acts independently, making de-
cisions about rate-limiting or adaptive queue management
based on requests’ attached tokens and interfaces’ prices.

RAJOMON’s control decisions account for call graph topol-
ogy to minimize wasted computation. To reduce waste in
parallel computation, which arises when one caller’s requests
fan out to multiple callees, RAJOMON uses token holdings to
coordinate load shedding across downstream services. Over-
loaded services collaboratively shed sub-requests originating
from the same caller’s request, thereby avoiding unnecessary
computation in parallel branches of the service graph.

To reduce waste in sequential computation, which arises
when a client requests computation from a chain of microser-
vices, RAJOMON controls load earlier in the call graph. Ide-
ally, load is shed at clients or upstream services. By the time a
request arrives at downstream services, its computation has al-
ready consumed significant service capacity and, for efficient
goodput, should be completed if possible.

3.3 Policies for Client Control
Policies are devised to tune system responsiveness to overload
while maintaining flexibility. These policies optimize the rate
and granularity at which tokens and prices are updated.

Asynchronous Token Generation. The Client-Side Con-
troller requires policies for token generation and spending,
which should ensure stable throughput and smooth transitions
between rate limiting and load shedding levels. RAJOMON
uses a Poisson process to replenish tokens, which disperses
token generation and client requests across time.

In contrast, generating tokens at some constant rate tends
to produce bursty requests and oscillating goodput as clients
simultaneously or synchronously replenish their token hold-
ings. For example, when every client replenishes tokens every



10ms, they all send more requests at the beginning of the
10ms period. Randomizing the number of replenished tokens
ameliorates this problem but does not fully resolve it.

Randomized Token Spending. RAJOMON selects a uni-
form random number of tokens for each outgoing request,
yielding a range of tokens attached to requests such that the
number of dropped requests increases gradually as the price
increases. This policy provides a smoother reaction to over-
load and enhances system responsiveness.

Attaching a deterministic number of tokens to requests
destabilizes throughput. A simple strategy spends all available
tokens on the next request. But because clients may hold a
similar number of tokens, the all-in strategy produces requests
with similar numbers of tokens. Under this policy, token-based
adaptive queue management is ineffective because the con-
troller cannot distinguish priority across requests.

3.4 Policies for Server Control
Regularly updating and sharing prices are essential for timely
overload control. Prices must reflect system dynamics and
load conditions from nodes throughout the call graph.

Proportional Price Updates. The Server-Side Controller
compares queuing delay against a threshold at regular inter-
vals, determining whether price must be updated for a partic-
ular service interface. Threshold and interval are configurable
parameters that typically range from 1ms to 20ms.

RAJOMON increases price by an increment that is propor-
tional to queuing delay. The greater the queuing delay in
excess of the threshold, the greater the price increase. Practi-
cally, when queuing delay exceeds the threshold by 1ms, the
price increases by approximately 3 to 13 tokens. When queu-
ing delay is less than half the threshold, the price decreases
by 1 token. Otherwise, price is unchanged.

Traditionally, additive-increase / multiplicative-decrease
(AIMD) algorithms adjust rates in token bucket mechanisms
(e.g., SEDA [41, 42]). AIMD divides admission rate by a
constant factor (e.g., two) during overload. But it throttles
incoming requests by the same factor regardless of overload
severity. AIMD cannot precisely control load.

Lazy Price Propagation. The Server-Side Controller sends
prices to upstream nodes in the call graph with a lazy update
policy. Lazy updates mitigate overheads associated with price
updates. Because microservice functions and their correspond-
ing RAJOMON controllers run on multiple threads, overheads
could arise from ensuring thread safety for price updates. Be-
cause applications are implemented with tiers or layers of
microservices, an overhead added to each layer can easily ac-
cumulate in deep call graphs and increase end-to-end latency.
These overheads are modest when RAJOMON need not attach
metadata to every response in the call graph. Upon sending
a response, the controller attaches its price information with
a configured probability, e.g., 20%, updating the upstream
services with the current local prices.
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Figure 3: RAJOMON example.

Maximum Total Price. The Server-Side Controller deter-
mines the price of its computation by combining its local
price with downstream price data. A service’s price is the
price of local computation plus the maximum of prices pub-
lished by relevant downstream services. This policy empha-
sizes the most overloaded downstream service, allowing rapid
responses to hotspots. Moreover, this policy is easy to imple-
ment. RAJOMON simply forwards a request’s token holdings
through the graph as it proceeds from client to back-end.

In contrast, an intuitive policy would resemble supply
chains. A service’s price is its local price plus the sum of
prices for all relevant downstream services. If prices are addi-
tive, then token spending must also be additive. Whenever a
request fans-out and triggers parallel sub-requests for down-
stream service, its token holdings must be split, allocated, and
attached to those sub-requests. We must split tokens so adap-
tive queue management at back-end services are effective, but
doing so adds complexity and latency.

3.5 Example

Figure 3 provides an example of RAJOMON’s opera-
tion. A client requests computation from three services.
Suppose server 1’s login interface calls both server 2’s
authentication and server 3’s homepage interfaces.

1 The Client-Side Controller generates tokens periodi-
cally as determined by its policy (e.g., 10 tokens every 10ms).
2 The client issues a request to login if it holds enough

tokens for the interface. Here, the client holds 10 tokens and
login’s price is 5 tokens. 3 The client spends 5 tokens,
attaching them to the outgoing login request.

4 The Server-Side Controller checks the request’s to-
kens against the price, admits the request, and attaches 5 to-
kens to each sub-request to authentication and homepage.
5 The server periodically updates prices based on queuing

delays, increasing prices for homepage and authentication
to 7 and 8 tokens, respectively. 6 Servers 2 and 3 drop in-



coming requests, which hold 5 tokens, and responds to server 1
with updated prices. 7 Server 1 adjusts its price table based
on local queuing delay and the maximum price of downstream
services (i.e., 8 tokens). When server 1 receives and drops
incoming requests with insufficient token holdings, it will
respond to upstream clients with updated prices.

This example illustrates how RAJOMON coordinates load
shedding and rate limiting for microservice graphs. For
fanned-out microservices, suppose Servers 2 and 3 must drop
half their requests. Since sub-requests inherit tokens from
their originating request, the servers can identify and drop the
half with fewer tokens attached. The servers would focus on
completing the remaining sub-requests and better translate
computation into goodput.

For a chain of microservices, when Server 1 receives in-
creased prices from Servers 2 and 3, it immediately adjusts its
price and drop more incoming requests. Doing so mitigates
overload earlier in the graph and reduces load shedding at
Servers 2 and 3. Moreover, Server 1 propagates its increased
price to clients and prompt more aggressive rate limiting.

4 Implementation

The RAJOMON prototype is implemented as an open-source
gRPC package [48] in 948 lines of Go code [5, 9]. The
implementation includes three parts. First, for overload de-
tection, RAJOMON implements a goroutine that periodically
measures queuing delays for other running goroutines. Go
uses goroutines instead of threads and our implementation
is analogous to prior techniques that monitor thread queuing
delays [3, 52]. Second, for price tables, RAJOMON uses syn-
chronous maps with built-in support for concurrent use [16].
Third, RAJOMON implements gRPC interceptors for service
receivers, service senders, and clients. Interceptors implement
rate-limiting and adaptive queue management (§3).

Baselines and implementation. We compare RAJOMON
to state-of-art microservice overload control frameworks—
(i) Dagor, (ii) Breakwater, (iii) Breakwaterd, (iv) TopFull—
which were introduced in Section 2.3. Breakwaterd is a dis-
tributed implementation of Breakwater that rate limits across
all sender-receiver pairs in the service graph. This was sug-
gested as a future work, but was neither implemented nor
evaluated in the original study [3].

For fair comparison, we implement all baselines in Golang
as gRPC libraries. The re-implementation follows the original
design, but as a gRPC interceptor, we removed Breakwater’s
dependencies on certain hardware or operating system ker-
nels [3,12,32]. We open source our implementation for Dagor,
Breakwater(d), and TopFull [23, 46, 47].

Benchmarks. We evaluate RAJOMON using academic
benchmarks and industry traces from Alibaba (Table 2). We
re-implement academic benchmarks, Social Network and Ho-
tel Reservation, in GoLang with gRPC and Redis based on

code from [49]. SLOs for each interface are set to 5× its
95th-percentile latency under normal conditions.

We use microservice application traces from Alibaba [24]
to generate synthetic benchmarks (traces are not deploy-
able applications). We consume service call graphs and each
service’s computation times to produce corresponding ser-
vice instances in Golang. Each service runs a busy-loop
to emulate each request’s computation. We focus on three
highly demanded microservice endpoints—S_102000854,
S_149998854, S_161142529—which we denote S1, S2, and
S3. Endpoints are representative of call graphs of different
sizes (10-20, 20-30, 30-40 nodes).

App Interfaces Depth Width #Nodes SLO (ms)

Social
Network

Compose Post 4 3 9 90
User Timeline 4 2 7 20
Home Timeline 4 1 5 20

Hotel
Reservation

Search Hotel 4 3 9 60
Reserve Hotel 3 2 5 25

Alibaba
S1 5 10 20 250
S2 9 10 33 600
S3 6 6 18 375

Table 2: Microservice benchmarks and SLOs.

Parameter Tuning. Overload control frameworks com-
monly involve four key parameters. First, queuing threshold
specifies when overload control is triggered. Second, update
frequency specifies how often control variables such as token
holdings and prices adjust. Third, step width specifies the
magnitude of the updates to control variables. Finally, client-
side parameter include the token generation rate in RAJOMON
and the expiration time in Breakwater. We allow Breakwa-
terd to have two sets of parameters—one for the front-end
service and another for the other services—resulting in twice
the number of parameters compared to Breakwater.

We use Bayesian optimization to tune overload control pa-
rameters for each application on its slowest request interface
(e.g., Compose Post for Social Network and Search Hotel for
Hotel Reservation). The objective function for tuning is a
weighted sum of goodput and tail latency, specifically defined
as good put −10×max(0, latency−SLO), following similar
methods from prior work [3, 4, 34]. In each iteration of the
optimization procedure, we generate a traffic surge from 80%
to 200% of the application’s maximum sustainable load and
then measure goodput and tail latency.

For TopFull, we adhere to their transfer learning process.
We implemented a graph-based simulator to first train the RL
model in the simulated environment before fine-tuning it on
the real application. We use the same reinforcement learning
model and parameters as described in the original paper.



5 Evaluation

We evaluate RAJOMON performance characteristics to answer
the following questions.
1. How does RAJOMON affect the goodput and latency of

microservice graphs under various loads? (§5.2)
2. How does RAJOMON impact the time required for goodput

to recover from an overload condition? (§5.3-5.4)
3. What is the impact of RAJOMON on the goodput and la-

tency of multiple, concurrent request interfaces? (§5.5-5.7)
4. How large is RAJOMON’s parameter variation compared

to other control schemes?(§5.8)
5. What is the latency overhead of RAJOMON compared to

other control schemes? (§5.9)

5.1 Experimental Setup

Testbed. We perform most experiments on seven Cloud-
Lab m510 servers, equipped with 8-core Intel Xeon D-1548
CPUs, 64GB DDR4 RAM, 256GB NVMe SSDs, and 10GB
NICs, unless otherwise stated. For Social Network and Hotel
Reservation experiments involving multiple interfaces (§5.5,
5.6), we scaled up to seven c220g2 servers, each equipped
with 20-core Intel Xeon E5-2660 v3 CPUs, 160GB RAM, and
10GB NICs. All servers run Ubuntu 18.04 LTS with kernel
4.15.0. Services are deployed with Kubernetes [21]. One ded-
icated node runs the control plane and clients while all other
nodes run microservices. All nodes communicate through
a single router. Each experiment for the Social Network or
Hotel Reservation applications runs on eight nodes, while the
Alibaba application runs on twenty nodes.

Load Generation and Measurement. We extend ghz for
load generation [8]. On the client node, 1000 workers estab-
lish 1000 concurrent gRPC connections and issue requests
asynchronously to the application. Requests follow a Poisson
process with some rate specified by the experiment. We ran-
domize input data for Hotel Reservation and Social Network
requests because experiments focus on success rate rather
than the content of responses.

Each experiment consists of a warmup (5s) and overload
(10s) phase unless otherwise noted. For experiments with
a single request type, we warm up with load at 80% of the
application’s maximimum sustainable throughput subject to
its SLOs and then overload to some rate specified by the
experiment. For experiments with multiple concurrent request
types, we warm up with fast, computationally light requests
and then overload with slow, computationally heavy requests.

We measure end-to-end request latency during overload and
report 95th-percentiles for latency and goodput (i.e., number
of requests processed within the SLO). We do not report
warm-up performance unless otherwise noted.

5.2 Performance for Single Interfaces

Figure 4 presents data for Search Hotel from the Hotel Reser-
vation app and Compose Post from the Social Network app.
Each experiment includes a warm-up phase—4k requests per
second (RPS) for Search Hotel and 2k for Compose Post—
followed by an overload phase with varied load spikes on
x-axis. Data is the average of five experiments with error bars
indicating variance in latency and goodput.

Results. For Search Hotel, RAJOMON ensures tail latency
remains below 200ms and sustains goodput of approximately
3k RPS during overload. Goodput drops only marginally as
traffic load increases. In contrast, baseline techniques cannot
maintain performance as load increases. Once load exceeds
12k RPS, their tail latencies are five times that of RAJOMON’s
and their goodputs are less than half of RAJOMON’s. TopFull
maintains lower, steady goodput at 1k RPS but suffers from
much higher tail latencies of 750ms.

For Compose Post, RAJOMON’s tail latency increases mod-
estly above the 80ms SLO, approaching 100ms, while good-
put remains stable above 2k RPS. In contrast, baseline tech-
niques exhibit a piecewise linear trend. Tail latencies spike
to 800ms when load is 5k RPS and then stabilize. Goodput
drops to 500 RPS and then stabilizes. Dagor is a bit more
robust and sustains performance until load is 7k RPS.

Discussion. RAJOMON’s decentralized control delivers
uniquely robust performance. It keeps tail latency low by
quickly shedding load. Price updates regulate the rate of in-
coming requests from upstream clients and services. More-
over, RAJOMON’s collaborative control keeps goodput high,
even under heavy load conditions, as back-end services drop
sub-requests that originate from the same upstream request.

In contrast, Breakwater is designed specifically for front-
end services and lacks downstream visibility, which delays
and diminishes any adaptation to overload in back-end ser-
vices. Less effective adaptation means lower goodput and
higher latency, especially under heavy load because requests
can quickly accumulate in queues before overload is detected.

Dagor sheds load to counter request incast, but wastes
server-side computation as client-side rate limiting would
be more efficient. Shedding becomes more aggressive as load
increases, which leads to lower goodput and higher latency.

Breakwaterd extends Breakwater to each sender-receiver
pair in the graph but suffers for the same reasons as Dagor.
Requests are rate-limited and dropped only in the node pre-
ceding an overloaded hotpsot because overload signals do not
propagate through the graph. As load increases, more partially
processed requests are ultimately dropped.

TopFull is limited by its coarse timescales. Within the 10-
second overload phase, TopFull experiences an initial period
of service unavailability followed by a slow recovery as it
begins adaptation. Delayed detection and response means
lower goodput and higher latency, which is consistent with
its own experimental evaluation [34]. Although it is slow to

https://ghz.sh/
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(b) Tail latency and Goodput during overload of Compose Post

Figure 4: Overall performance of RAJOMON and other baselines for Search Hotel and Compose Post requests.
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Figure 5: The throughput and tail latency under traffic surge of Search Hotel (single interface).

respond, TopFull’s capable reinforcement learning model can
eventually stabilize performance at medium and high load.

Across all baselines, performance losses are more pro-
nounced for Compose Post because its back-end services
require more intensive Redis writes. When not managed ef-
fectively, overload produces much greater increases in latency.

5.3 Control Dynamics for Single Interface

Figure 5 illustrates system dynamics. Client demand is 4k
RPS during warm-up followed by 10k RPS during overload.
The first row shows latency across time. The second row
shows how requests are either rate-limited, dropped, or pro-
cessed with a response time that may or may not satisfy SLOs.

Results. When overload begins at 5 seconds, RAJOMON
drops many requests and then, over the next 2 seconds,
steadily recovers goodput until it reaches 5k RPS. Most excess
load is controlled through rate limiting thereafter. Latency ini-
tially spikes to 100ms but quickly returns to SLO target.

Breakwater(d)’s responses to overload do not occur until
2 to 4 seconds after its onset. During these periods, 50% to

100% of requests violate the SLO target latency. Eventually,
latency returns to target but goodput stabilizes at lower levels,
below the 4k RPS during warm-up.

Dagor maintains throughput of 5k RPS and aggressively
drops the additional 5k RPS of overload. However, 95th per-
centile latency exceeds 100ms and most of its throughput
violates the SLO. TopFull encounters 4 seconds of unavail-
ability due to overload, followed by many dropped requests
and slow goodput recovery.

Discussion. RAJOMON promptly detects server-side con-
gestion and drops excess requests at 5 seconds. After this ini-
tial reaction, RAJOMON propagates updated prices upstream
to clients, which rate limits subsequent requests. According
to RAJOMON’s lazy update policy, price updates are included
in 20% of responses, which explains the 2-second transition
from server-side load shedding to client-side rate limiting,
which stabilizes latency and maintains goodput.

In contrast, Breakwater(d) experiences delays and ineffi-
ciencies due to a lack of coordination. The Breakwater front-
end requires 2 seconds to detect queuing delays from back-
end overload. Even after detection, back-end delays are higher



than those at the front-end. Since Breakwater issues credits
based on front-end delays, this mismatch adds another 2 sec-
onds to load adjustment even though Breakwater is tuned to
update credits every 1ms.

Breakwaterd responds more quickly as it reduces load at
intermediate tiers. When the back-end becomes overloaded,
mid-tiers rate-limit and queue incoming requests, which even-
tually time out. However, timed-out requests do not signal
upstream services or clients, leading to wasted computation
on requests that are ultimately discarded. This inefficiency
explains Breakwaterd’s sub-optimal goodput.

Dagor’s lack of rate limiting leads to many dropped re-
quests, which slows down the system. Dagor drops requests
only in the nodes preceding hotspots. For four-tier Search Ho-
tel, most services continue processing 10k RPS even though
half of these requests are dropped at the second-to-last tier.
This wastes upstream computation and increases latency.

TopFull’s centralized, front-end-only design inherits the
limitations of both Breakwater and Dagor. It detects overload
only after end-to-end goodput drops, preventing timely re-
actions to overload and causing extended service downtime.
Moreover, load is shed only at the front-end, which wastes
computation on requests that cannot satisfy SLOs and con-
tribute to goodput. Reinforcement learning should eventually
adapt to new load conditions but over a long timescale.

5.4 Recovery Time
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Figure 6: Recovery time of RAJOMON and baselines for
Search Hotel and Compose Post request.

Figure 6 plots average recovery time under varying load
conditions. We define recovery time as the period between
the onset of overload and goodput stabilization at some level.

Results. RAJOMON consistently maintains sub-second re-
covery regardless of load conditions. Although baselines
demonstrate sub-second recovery at low loads, they often
struggle at higher loads. For Breakwater, recovery time rises
to around 4 seconds as load increases. For Breakwaterd and
Dagor, recovery times vary depending on the workload. Break-
waterd responds slowly for Social Network and Dagor for
Hotel Reservation; recovery times range from 3 to 5 seconds

depending on the severity of overload. Topfull is slow and
often requires more than 5 seconds to recover.

Discussion. RAJOMON is the only framework that con-
sistently recovers in less than a second. Its decentralized
overload control is fast and responsive, regardless of load.

In contrast, baseline techniques present a trade-off between
recovery time and stable goodput. Breakwaterd and Dagor’s
decentralized designs help them react to overload and reach
equilibrium faster, but at the expense of goodput. They re-
spond quickly, in part, because their stable goodput after the
onset of overload is much lower than RAJOMON’s. Simi-
larly, as load increases, Breakwater reports lower goodput
and shorter recovery times. TopFull suffers from longer re-
covery times due to its centralized architecture.

5.5 Performance for Multiple Interfaces

Figure 7 details RAJOMON’s performance for concurrent re-
quests to multiple interfaces. For the Hotel Reservation appli-
cation, we generate Reserve Hotel requests at a certain rate
during warm-up and add an equal amount of Search Hotel
traffic during overload. For the Social Network application,
we generate Read User Timeline requests during warm-up
and add Compose Post and Read Home Timeline traffic during
overload. Note x-axis reports load per interface and, for ex-
ample, x = 10k RPS in the Social Network application means
30k RPS total load from three request types.

Results. In Figure 7a, RAJOMON maintains a latency of ap-
proximately 100ms and a goodput of 4k RPS for both Search
Hotel and Reserve Hotel requests, even as the load increases.
In contrast, Breakwater, Dagor, and TopFull maintain low
tail latencies for Reserve Hotel but exhibit increased laten-
cies for Search Hotel as the load increases. The goodput of
most baselines for both interfaces drops from 4k to 1k as load
approaches 14k RPS. Two exceptions are Breakwaterd for
Search Hotel and Dagor for Reserve Hotel, both of which
maintain goodput above 2k RPS while sustaining low tail
latencies.

In Figure 7b, RAJOMON maintains latency within SLOs
across all request types. It sustains Compose Post and Read
Home Timeline goodput at 2.5k RPS, while Read User Time-
line goodput increases to 5k RPS as load intensifies. Most
baselines exhibit reduced goodput and increased latencies for
Compose Post once the load surpasses 4k RPS. For Read
User Timeline and Read Home Timeline, baseline goodput di-
minishes to less than half of RAJOMON’s performance as the
load nears 10k RPS. Notably, Topfull achieves higher Read
User Timeline goodput beyond 6k RPS but at the expense of
Compose Post and Read Home Timeline interfaces. Breakwa-
terd stands out by maintaining latency within SLOs for most
interfaces; however, it experiences a decline in goodput.

Discussion. RAJOMON demonstrates low latency and high
goodput even under heavy concurrent loads from multiple
request types. It achieves this by combining AQM with rate-
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Figure 7: The performance of RAJOMON and baselines on concurrent requests (up to 30k RPS in total).
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Figure 8: The dynamics of the throughput, latency, and prices for concurrent Social Network requests.

limiting and assessing the maximum sustainable load for each
interface separately. RAJOMON’s advantage is particularly
evident for Read User Timeline, which has the potential for
higher goodput and lower latency because these requests do
not share hotspots with Compose Post and Read Home Time-
line. Only RAJOMON manages to realize this potential by
avoiding head-of-line blocking. Per-interface pricing effec-
tively virtualizes a multi-queue system and sets distinct ad-
mission rates for each interface.

Dagor distinguishes between interfaces, but its adaptive
queue management lacks coordination across the service
graph. The same inefficiencies observed in Figure 5 persist:
The massive load shedding in mid-tier services increases the
latencies of Search Hotel and Compose Post requests. This
finding highlights that interface granularity must be combined
with end-to-end coordination to be fully effective.

Breakwater are oblivious to interfaces and suffer from head-
of-line blocking because, for instance, they cannot rate limit
the slow requests (Search Hotel and Compose Post) inde-
pendently. As a result, other interfaces also suffer from low
goodput. If Breakwater could differentiate between interfaces,
they could issue fewer credits for slow interfaces, ensuring
performance for all interfaces. Breakwaterd achieves low tail
latencies but at the expense of reduced goodput. This occurs
because Breakwaterd reduces load in intermediate tiers with-
out coordinating with frontend and end users, as previously
discussed in Sections 5.2 and 5.3. Therefore, effective rate-
limiting mechanisms should incorporate interface granularity
and end-to-end coordination to optimize request rates.

TopFull cluster interfaces based on shared hotspots and
implements admission control for each cluster. In our case,
Search Hotel and Reserve Hotel form one cluster, Compose



Post and Read Home Timeline form another, and Read User
Timeline forms a third. This approach can sometimes work.
The control agent sets a 6k RPS rate for Read User Timeline
while keeping latency within SLOs. But, for other clusters,
the lack of decentralized control and client-side rate-limiting
constrains performance. Although TopFull can set different
rates for Search Hotel and Reserve Hotel, its slow reaction
times prevent it from handling even 1k RPS effectively.

5.6 Control Dynamics for Multiple Interfaces
Figure 8 analyzes system dynamics for the Social Network
application’s multiple request types. Figure 8a follows the
same interpretation as Figure 5, except for the presence of
multiple concurrent requests. Figure 8b details service prices
at interface granularity. Recall that the price of a service is
the maximum of all the downstream prices paid by its sub-
requests.

Results. Figure 8a indicates a negligible number of
dropped requests and SLO violations. Once Compose Post re-
quests arrive, RAJOMON immediately rate limits Read Home
Timeline. Figure 8b illustrates how RAJOMON dynamically
adjusts prices for different services to reflect their load. Dur-
ing warm-up, post storage service is the only hotspot and its
price dictates prices for all request types. During overload,
post storage’s prices keep increasing slowly so Read User
Timeline interface remains inexpensive. In contrast, home
timeline’s price increases substantially within half a second,
indicating an emerging hotspot. The price increase propagates
upstream such that Compose Post and Read Home Timeline
both become much more expensive.

Discussion. RAJOMON’s dynamic prices play a crucial role.
First, prices reflect real-time load and delay across services.
When home timeline’s delays are immediately reflected in
Compose Post and Read Home Timeline prices, ensuring that
overload control is precise and timely.

Furthermore, prices at interface granularity isolate Read
User Timeline requests, which do not involve the overloaded
home timeline service. These requests are neither rate lim-
ited nor dropped, ensuring consistent performance even when
other parts of the system are under stress.

5.7 Performance for Alibaba Traces
We further evaluate three real-world traces from Alibaba (Sec-
tion 4). We construct a service graph that is the union of S1,
S2, and S3, which makes it much larger than Hotel Reserva-
tion and Social Network. We start S1 and S3 during warm-up
and then add S2 during overload.

Results. Figure 9 indicates RAJOMON maintains latencies
below 200ms and goodput at 4k RPS for all interfaces and
varied loads. Collectively, the baselines are less effective. As
load approaches 8k-10k RPS, latency increases exponentially
beyond 500ms and goodput falls by half.
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Figure 9: The performance impact of RAJOMON and baselines
on large service graphs (up to 30k RPS in total).

Discussion. RAJOMON manages overload efficiently at
scale, maintaining low latencies and high goodput even un-
der extreme load. In contrast, baselines struggle under high
load. Breakwater’s rate limiting scales better and achieves
consistently lower latencies than Dagor’s adaptive queue man-
agement (i.e., dropping requests) as detailed in §5.2. TopFull’s
RL agents set effective admission rates for S1 and S3. But the
reason for S2’s rate is unknown because TopFull is a black-
box that does not detail the interactions between its RL agents.
Yet its centralized approach for dropping requests suffers from
higher latencies and lower goodput for all interfaces.

5.8 Parameter Variability
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Figure 10: Comparison of parameter variability and latency
overhead.

Overload control frameworks must be tuned for each ap-
plication to be effective [3, 34]. A robust framework should



be less sensitive to tuning parameters. Such a framework
would reduce tuning time and effort, while providing more
consistent performance across varied applications and system
conditions, given specific parameter values.

We quantify robustness with the Coefficient of Variation
(CV) for tuned parameters.2 CV measures the relative vari-
ability of parameters, permitting comparisons across control
frameworks. We calculate CV of each framework’s optimal
parameters in Table 3 across the three applications in Table 2.3

Figure 10a indicates RAJOMON performs well with simi-
lar parameters for varied applications. It exhibits the lowest
variability in tuned parameter values, indicating we need not
extensively tune and optimize for each application.

Breakwater(d) exhibits higher variability, indicating the
difficulty of re-tuning its parameters for each application and
highlighting the risks from inconsistent performance. Break-
water’s credit-based rate limiting requires precise control over
the total number of credits issued and held by each client, mak-
ing performance more sensitive to parameters. Dagor exhibits
lower variability than Breakwater(d) because priority-based
adaptive queue management does not cause abrupt changes
in traffic and tends to be more robust [3].

5.9 Overhead Comparison
We assess overheads by measuring differences in median
latency with and without control for a system with modest
2k RPS load. Figure 10b presents the distribution4 of latency
overheads across eight service interfaces in Table 2.

RAJOMON’s overhead is low for two reasons. First, it main-
tains and propagates only necessary state such as tokens per
request and price per interface. In contrast, Dagor updates
large matrices at all microservices that track request priorities
and determine admission levels based on a priority cut-off:
(B,U). These matrices, which grow linearly with the number
of interfaces and user groups, suffer from lock contention.
Note that Dagor and Breakwaterd’s accumulate across tiers
in deep microservice graphs, harming end-to-end latency.

Second, RAJOMON performs local price calculations asyn-
chronously and off the critical path. TopFull also incurs low
overheads because it uses only one token bucket at the front-
end and its reinforcement learning decisions are asynchronous.
In contrast, Breakwater calculates a client’s new credit hold-
ings cnew

x before every response. This overhead lengthens
queues and harms latency, especially under higher loads.

6 Related Work and Discussion

Network Congestion Control Extensive work has ad-
dressed congestion control at the network layer [1, 18, 20, 22,

2CV is ratio of standard deviation and mean [10].
3TopFull’s RL control is excluded.
4Maximum, 75th, 50th, 25th percentile, and minimum.

28, 44, 51]. RAJOMON, however, accounts for microservice-
specific factors like call graphs and interdependencies. Future
work could integrate RAJOMON with these mechanisms to
improve end-to-end performance.

Load Balancing and Autoscaling. RAJOMON comple-
ments existing resource management strategies. While au-
toscaling increases service capacity, it is inherently slow and
typically requires 40–200 seconds [30, 33–35, 38–40, 50].
In contrast, RAJOMON provides rapid overload control on
a subsecond timescale, mitigating performance issues before
autoscaling adjustments take effect. Once autoscaling pro-
visions additional resources, the prices fall accordingly to
accommodate higher throughput. Moreover, the tokens and
prices primitives provide insight into request characteristics
and downstream loads. This information can enhance load
balancing and job scheduling decisions. Finally, even with
optimal scheduling and load balancing, systems can experi-
ence overload due to unexpected traffic bursts that exceed
capacity [14, 29, 31, 43, 45]. In such scenarios, RAJOMON
serves as a safeguard, maintaining performance when other
strategies are insufficient.

Malicious Clients. RAJOMON assumes trusted clients,
such as proprietary mobile apps or Internet-of-Things devices
that account for most traffic [27]. However, untrusted clients
may attempt to exploit the framework for more resources or
disrupt services. To prevent this, RAJOMON would require a
server-side validation module to ensure token spending aligns
with token generation policy and history. Trust models and
validation techniques are an avenue for future research.

Dynamic Service Graphs. We focused on applications
with deterministic execution paths. In practice, microservices
may have dynamic call paths. If call paths depend on request
metadata, such as branching based on payload, these requests
can be treated as different interfaces upon receipt. If call paths
are random and unknown upon receipt, for example, due to
cache misses, one extension for RAJOMON could use proba-
bility theory to update its price table based on the expected
value of downstream costs. For instance, if the price is 10 for
a cache hit and 50 for a miss, with a 10% miss rate, the local
price should be 15, based on expectation. Future work could
explore other pricing policies for dynamic paths and flexible
microservice settings.

7 Conclusion

RAJOMON presents a novel, market-based overload control
system for microservices, using tokens and price tables for
distributed rate limiting and load shedding while coordinating
control throughout service graphs. RAJOMON significantly
outperforms state-of-the-art baselines, improving goodput
by more than 45% and reducing latency by more than 78%
under high load. Its fast and precise control, with sub-second
recovery times, ensures system reliability and efficiency in
complex microservice systems.
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A Alibaba Production Trace Samples

S1 S2 S3

Figure 11: Sampled Alibaba services.

Figure 11 illustrates the service call graphs, S1, S2, and
S3, sampled from Alibaba production traces. While shown
separately, these graphs share some common microservices.
In our experiments, the three graphs were deployed together
across 20 servers.

B Overload Control Parameters

Mechanism Control Target Update Interval
Dagor queuing threshold threshold update rate
Breakwater queuing threshold Ctotal update rate
Breakwaterd queuing threshold Ctotal update rate
RAJOMON queuing threshold price update rate
Mechanism Update Step Width Clients
Dagor α, β umax
Breakwater α, β initial credit, client expiration
Breakwaterd α, β initial credit, client expiration
RAJOMON price update step token update rate

Table 3: Tuned parameters for overload control mechanisms,
categorized by their function.

Table 3 shows the parameters tuned for each overload con-
trol mechanism.
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