
From Stateless Functions
to Stateful Applications

with Azure Durable Functions

SEBASTIAN BURCKHARDT

(MICROSOFT RESEARCH)

KONSTANTINOS KALLAS

(U. OF PENNSYLVANIA)

DAVID JUSTO

(MICROSOFT)

AND MANY MORE CONTRIBUTORS: CHRIS GILLUM (MICROSOFT), CHRISTOPHER MEIKLEJOHN (CARNEGIE

MELLON UNIVERSITY), ZHE YANG, JEFF HOLLAN, ANTHONY CHU, AMANDA DEEL, ANATOLI BELIAEV, CONNOR

MCMAHON, KANIO DIMITROV, KATY SHIMIZU, TED HART, TSUYOSHI USHIO (MICROSOFT)

CLOUD APPLICATIONS

• Implementing and deploying an application on the cloud is a pain

• How many resources to allocate?

• How to achieve reliability?

• How to adapt to load increase?

• What about periods of inactivity?

• Monitoring application state?

DEVELOPERS CHOOSE

ProductivityControl

PythonAssembly Java, C#

C, C++ JavaScript
Haskell

DEVELOPERS CHOOSE

ProductivityControl

Functions

as a Service

e.g.

AWS Lambda, Azure Functions

Infrastructure

as a Service

Platform

as a service
Containers

as a service

DEVELOPERS CHOOSE

ProductivityControl

SERVERLESS

Functions

as a Service

e.g.

AWS Lambda, Azure Functions

Infrastructure

as a Service

Platform

as a service
Containers

as a service

TOP-GROWING CLOUD SERVICES 2019

Place Service Growth 2018 Use 2019 Use

#1 (tie) Serverless 50% 24% 36%

#1 (tie) Stream Processing 50% 20% 30%

#3 Machine Learning 44% 18% 26%

#4 Container-as-a-Service 42% 26% 37%

#5 IoT 40% 15% 21%

#6 Data warehouse 38% 29% 40%

#7 Batch processing 38% 26% 36%

Source: Forbes, RightScale 2019 state of the cloud report

So what exactly is serverless?

SERVERLESS FUNCTIONS

• Easy to deploy

• Elastic scale

• Load-based cost (e.g. pay per invocation)

• Free language choice, easy REST interface

string helloworld()

{

return “Hello, World”;

}

> curl http://my-function-app.azure.com/helloworld

Hello, World

http://my-function-app.azure.com/helloworld

COMMON MISCONCEPTION
SERVERLESS FUNCTIONS ARE NOT “PURE”.
THEY CAN CALL OTHER SERVICES.

Functions can call external services:

key-value stores, queues, blob storage,

pub-sub, databases, ...

= the “standard library” of cloud

programming!

async void delete_all()

{

await cloudstorage.delete_file(“*”);

}

async void counter_increment()

{

var current = await cloudstorage.read(“counter”);

current = current + 1;

await cloudstorage.write(“counter”);

}

“SERVERLESS” IS NOT JUST COMPUTE

Serverless

Compute

“Serverless”

Storage

“Serverless”

Transport

Stateless Functions Table Storage

Blob Storage
Queue Storage

Serverless is already very useful today,

but...

… THERE ARE SEVERAL PAIN POINTS AROUND
STATE MANAGEMENT AND SYNCHRONIZATION.

• Sychronization

functions can interleave and race, synchronization via storage is challenging

• Partial execution

hosts can fail in the middle of a function, leaving behind inconsistent state

• Cost/Performance

Double billing if a function waits for another function

Lots of calls to storage, lots of data movement => wastes time, CPU = money

SERVERLESS
APPLICATIONS

Implementing a non-trivial

applications on the cloud ends up

looking like this

Stateless

Service

Queue

Service

Stateless

Service

Stateless

Service Storage

Service

Storage

Service

Perform

computation

State

Persist

Intermediate

Results

Synchronize

Writes
PROPOSED

SOLUTION:

Abstractions for stateful

serverless programming

Perform

computation

ABSTRACTION LAYERS

• Front End:

• Task-Parallel Code

• Workflows and Actors

Stateful Serverless

Execution Engine

C# JavaScript ……
Several

Frontends

Backend

• Back End:

• Reliable distributed execution

• Language agnostic

THE AZURE DURABLE FUNCTIONS
PROGRAMMING MODEL

State & Synchronization for Serverless

2 NEW TYPES OF STATEFUL FUNCTIONS

Activities

≈ Stateless Functions

Orchestrations

≈ Workflow Functions

Entities

≈ Actor Functions

• Reliably compose functions using task-parallel paradigm.

• e.g. a sequence of functions, or multiple parallel function calls

• Advantages:

• Expressive: very simple code for common scenarios

• Solves the partial execution problem

Automatically recover state of workflow.

• Solves the double billing problem

Can persist execution state in storage - don’t get charged while waiting

Activities

(≈ Stateless Functions)

Orchestrations

(≈ Workflow Functions)

ORCHESTRATIONS:
WHAT’S NEW ABOUT IT?

• Do what was traditionally done with workflow “languages”

(e.g. XML-based, or graphical designers)

• But written in task-parallel async-await style code.

• Thus, we get to enjoy the maturity of the host language:

• all of the standard sequential control flow (conditionals, loops, switches, ...)

• all of the task-based asynchronous control flow (await, Task.WhenAll, Task.WhenAny, ...)

• all of the exception handling (try/catch/finally)

• all of the existing tooling (IDE, debugger etc.)

EXAMPLE 1

• Simple sequence: Upload file, then update index

void uploadImage(string name, byte[] data)

{

await addToBlobStorage(name, data);

await updateIndex(name);

}

void addToBlobStorage(string name, byte[] data)

{

...

}

void updateIndex(string name)

{

...

}

EXAMPLE 2

• Same but in parallel

void uploadImage(string name, byte[] data)

{

await Task.WhenAll(

addToBlobStorage(name, data),

updateIndex(name)

);

}

void addToBlobStorage(string name, byte[] data)

{

...

}

void updateIndex(string name)

{

...

}

EXAMPLE 3

• Process all files in a directory,

return sum of results

void processFiles(string directory)

{

var files = await listFiles(directory);

var tasks = files.Select(f => process(f)).ToList();

await Task.WhenAll(tasks);

return tasks.Select(t => t.Result).Sum();

}

list<string> listFiles(string directory)

{

...

}

int process(string file)

{

...

}

RELIABLE EXECUTION

• State of workflow is persisted as history of events. O B1

A
B2

B3

B4

O started

A() started

A returned -> [f1,f2,f3,f4]

B1(f1) started

B2(f1) started

B3(f3) started

B4(f4) started

B2 returned 32

B4 returned 0

B1 returned 120

B0 returned 1

O returned 153

• History can be inspected in storage for debugging / monitoring purposes!

• Can rehydrate intermediate states (after crash or inactivity) from history

• Proceed in episodes, each processes batch of events, billed as 1 function inv.

EXAMPLE: PARTIAL HISTORY ≈ INTERMEDIATE STATE

O started

A() started

A returned -> [f1,f2,f3,f4]

B1(f1) started

B2(f1) started

B3(f3) started

B4(f4) started

B2 returned 32

B4 returned 0

O B1

A ✓
B2✓

B3

B4B4✓≈

REHYDRATE STATE FROM HISTORY BY REPLAY

• Replay code but do not restart activities immediately, use placeholder task

• Substitute recorded results into placeholders during replay (A, B2, B4)

• At end of replay restart activities for remaining placeholders (B1, B3)

void processFiles(string directory)

{

var files = await listFiles(directory);

var tasks = files.Select(f => process(f)).ToList();

await Task.WhenAll(tasks);

return tasks.Select(t => t.Result).Sum();

}

O started

A() started

A returned -> [f1,f2,f3,f4]

B1(f1) started

B2(f1) started

B3(f3) started

B4(f4) started

B2 returned 32

B4 returned 0

CAVEAT: CODE MUST SATISFY 2 REQUIREMENTS

• Determinism of orchestrators

Orchestrator must be deterministic, otherwise replay diverges

• Idempotence of activities

Activities that crash before persisting result are restarted during recovery

User responsibility : separate deterministic coordination from nondeterministic work

ACCIDENTAL NONDETERMINISM:
MITIGATIONS? SOLUTIONS?

• Document common nondeterminism sources

• time of day, random generators, I/O, global static variables

• User must wrap these in activities, or use built-in deterministic versions

• Include static analysis tool to help find mistakes

• Some other potential ideas:

• Use language with effect system (e.g. Daan Leijen’s Koka)

• Automatic wrapping of request handlers (JavaScript), work w/ Christopher Meiklejohn

ENTITIES
= DURABLE APPLICATION STATE

• Entity = smallest piece of state, a “single key-value pair”, a virtual actor (Orleans)

• Runtime delivers “operations” (messages) to entities via ordered async channels

• Runtime executes operations on entities, one at a time. Operations can

• read and update state

• send messages

• perform external calls

• Durable: All state (incl. messages) reliably kept in cloud storage

Entities

≈ Actor Functions

EXAMPLE ENTITY:
BANK ACCOUNT

• each entity identified by a (name,key) pair, e.g.

(“AccountEntity”, “32974-234093-00”)

• Accessible via interface

public interface IAccount
{

Task<int> Get();
Task Modify(int Amount);

}

public class Account : IAccount
{

public int Balance { get; set; }

public Task<int> Get()
{

return Task.FromResult(Balance);
}

public Task Modify(int Amount)
{

Balance += Amount;
return Task.CompletedTask;

}

// boilerplate for class-based syntax
[FunctionName(nameof(Account))]
public static Task Run([EntityTrigger]

IDurableEntityContext ctx) =>
ctx.DispatchAsync<Account>();

}

CALL VS. SIGNAL

• An entity can signal another entity

send message, fire and forget

• An orchestration can call an entity

and wait for ack/result

• But entities cannot call entities (to prevent deadlock)

different from virtual actors in Orleans, which can deadlock.

signal

call

response

SYNERGY !

• Enables revolutionary novel synchronization construct:

!!! Critical sections !!!

just kidding of course, that’s the most standard one of all;

but we can’t usually do it in distributed systems because of failures!

• Effective for preventing unwanted races and interleavings (doh)

• Critical sections do not require special “failure” handling,

such as ability to roll back effects

Orchestrations

≈ Workflow Functions

Entities

≈ Actor Functions

EXAMPLE: TRANSFER FUNDS

var fromAccount = new EntityId("Account", from);
var toAccount = new EntityId("Account", to);

using (await ctx.LockAsync(fromAccount, toAccount))
{

var source = context.CreateEntityProxy<IAccount>(fromAccount);
var destination = context.CreateEntityProxy<IAccount>(toAccount);

if (amount <= await source.Get())
{

await Task.WhenAll(
source.Modify(-transferAmount),
destination.Modify(transferAmount)

);
}

}

var fromAccount = new EntityId("AccountEntity", from);
var toAccount = new EntityId("AccountEntity", to);

using (await ctx.LockAsync(fromAccount, toAccount))
{

var source = context.CreateEntityProxy<IAccount>(fromAccount);
var destination = context.CreateEntityProxy<IAccount>(toAccount);

if (amount <= await source.Get())
{

await Task.WhenAll(
source.Modify(-transferAmount),
destination.Modify(transferAmount)

);
}

}

MESSAGE DIAGRAM
orchestration

fromAccount toAccount

lock

lock

ok
get

balance

add
add

okok

release

release

GUARANTEED DEADLOCK FREEDOM

Runtime-enforced rules prevent deadlocks:

• Runtime acquires locks in order (fixed global total order).

• Critical sections cannot be nested.

• Within a critical section:

• can call only entities that were locked.

• can signal only entities that were not locked.

• cannot call the same entity more than once in parallel.

STATUS

• Azure Durable Functions have been GA for about 2 years now.

• Popular & growing: 50% of Azure Functions users use them (recent survey)

• Entities & critical sections are a new feature, shipped last year,

(building on research w/ intern Christopher Meiklejohn)

• Much work left to be done

• formal semantics for “stateful serverless applications”

• build new implementation w/ more aggressive optimizations

ONGOING WORK:
SEMANTICS & OPTIMIZATIONS

ABSTRACT SEMANTICS

→ 𝑚
𝑚 → 𝑚1

′𝑚2
′ …

ℎ 𝑚1𝑚2… → ℎ′𝑚1
′𝑚2

′ …

Client Transition

Task Transition

Instance Transition

• Two computation units:

• Stateless Tasks

• Stateful Instances

• Communication through messages

• State is event history

IMPLEMENTATION

• Distributed – multiple partitions

• Reliable – exactly/at least once

• Executions are persisted incrementally

• Elastic – adapting to load changes

Partition 1 Partition 2

Queue Queue

Clients Clients

Log Log

Inst 1 Inst k

… …

Clients

Partition 3

Queue

Log

Inst n

…

IMPLEMENTATION 2.0

• Main sources of overhead:

• Storage Accesses

• Network Communication

• Optimizations:

• Speculative Message Exchange

• In memory processing of same-partition messages

• Message Batching

• WIP Proof of correctness

DEV TOOLING AND EXPERIENCE

A tour of the programming experience with Durable Functions

HELPING DEVS BY...

• Preventing common errors via live code analysis

• Providing common patterns to quickly scaffold solutions

• Allowing them to use their preferred PL for the job

HELPING DEVS BY...

• Preventing common errors via live code analysis

• Providing common patterns to quickly scaffold solutions

• Allowing them to use their preferred PL for the job

MEETING CODE CONSTRAINTS

Activity
Activity

Activity

Activity

Activity

Deterministic Non-Deterministic

Orchestrator

LIVE CODE ANALYZER

Generating GUIDs

Reading Enviroment Variables

Reading DateTime objects

… and so on …

Constraint Violations Live Code Analyzer

Alerts user of constraint violations

Suggests replay-safe APIs and

other refactorings

Programmer Feedback

HELPING DEVS BY...

• Preventing common errors via live code analysis

• Providing common patterns to quickly scaffold solutions

• Allowing them to use their preferred PL for the job

GETTING UP TO SPEED WITH DURABLE

Quick-start samples and templates for each host PL

Fan-Out Fan-In Monitoring long-running workflows Timed Human-in-the-loop

computation

HELPING DEVS BY...

• Preventing common errors via live code analysis

• Providing common patterns to quickly scaffold solutions

• Allowing them to use their preferred PL for the job

USE THE RIGHT PL FOR THE JOB

Stateful Serverless

Execution Engine

C# JavaScript ……
Several

Frontends

Backend

• Open-sourced SDKs for .NET,

JavaScript, TypeScript

• Extremely soon: SDKs for two highly-

requested host PLs

• Working to facilitate the creation of

third-party SDKs

DEMO: BUILD A SERVERLESS BANK

