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CLOUD APPLICATIONS

• Implementing and deploying an application on the cloud is a pain

• How many resources to allocate?

• How to achieve reliability?

• How to adapt to load increase?

• What about periods of inactivity?

• Monitoring application state?
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TOP-GROWING CLOUD SERVICES 2019

Place Service Growth 2018 Use 2019 Use

#1 (tie) Serverless 50% 24% 36%

#1 (tie) Stream Processing 50% 20% 30%

#3 Machine Learning 44% 18% 26%

#4 Container-as-a-Service 42% 26% 37%

#5 IoT 40% 15% 21%

#6 Data warehouse 38% 29% 40%

#7 Batch processing 38% 26% 36%

Source: Forbes, RightScale 2019 state of the cloud report 



So what exactly is serverless?



SERVERLESS FUNCTIONS

• Easy to deploy

• Elastic scale

• Load-based cost (e.g. pay per invocation)

• Free language choice, easy REST interface

string helloworld()

{

return “Hello,  World”;

}

> curl http://my-function-app.azure.com/helloworld

Hello, World

http://my-function-app.azure.com/helloworld


COMMON MISCONCEPTION
SERVERLESS FUNCTIONS ARE NOT “PURE”.
THEY CAN CALL OTHER SERVICES.

Functions can  call  external services:

key-value stores, queues, blob storage, 

pub-sub, databases, ... 

= the “standard library” of cloud 

programming!

async void delete_all()

{

await cloudstorage.delete_file(“*”);

}

async void counter_increment()

{

var current = await cloudstorage.read(“counter”);

current = current + 1;

await cloudstorage.write(“counter”);

}



“SERVERLESS” IS NOT JUST COMPUTE

Serverless 
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Blob Storage
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Serverless is already very useful today,

but...



… THERE ARE SEVERAL PAIN POINTS AROUND
STATE MANAGEMENT AND SYNCHRONIZATION.

• Sychronization

functions can interleave and race, synchronization via storage is challenging

• Partial execution

hosts can fail in the middle of a function, leaving behind inconsistent state

• Cost/Performance

Double billing if a function waits for another function

Lots of calls to storage, lots of data movement => wastes time, CPU = money



SERVERLESS 
APPLICATIONS

Implementing a non-trivial 

applications on the cloud ends up 

looking like this
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ABSTRACTION LAYERS

• Front End:

• Task-Parallel Code

• Workflows and Actors

Stateful Serverless 

Execution Engine

C# JavaScript ……
Several

Frontends

Backend

• Back End:

• Reliable distributed execution

• Language agnostic



THE AZURE DURABLE FUNCTIONS
PROGRAMMING MODEL

State & Synchronization for Serverless



2 NEW TYPES OF STATEFUL FUNCTIONS

Activities

≈ Stateless Functions

Orchestrations

≈ Workflow Functions

Entities

≈ Actor Functions



• Reliably compose functions using task-parallel paradigm.

• e.g. a sequence of functions, or multiple parallel function calls

• Advantages:

• Expressive: very simple code for common scenarios

• Solves the partial execution problem

Automatically recover state of workflow.

• Solves the double billing problem

Can persist execution state in storage - don’t get charged while waiting

Activities

(≈ Stateless Functions)

Orchestrations

(≈ Workflow Functions)



ORCHESTRATIONS: 
WHAT’S NEW ABOUT IT?

• Do what was traditionally done with workflow “languages”

(e.g. XML-based, or graphical designers)

• But written in task-parallel async-await style code.

• Thus, we get to enjoy the maturity of the host language:

• all of the standard sequential control flow (conditionals, loops, switches, ...)

• all of the task-based asynchronous control flow (await, Task.WhenAll, Task.WhenAny, ...)

• all of the exception handling (try/catch/finally)

• all of the existing tooling (IDE, debugger etc.)



EXAMPLE 1

• Simple sequence: Upload file, then update index

void uploadImage(string name, byte[] data)

{

await addToBlobStorage(name, data);

await updateIndex(name);

}

void addToBlobStorage(string name, byte[] data)

{

...

}

void updateIndex(string name)

{

...

}



EXAMPLE 2

• Same but in parallel

void uploadImage(string name, byte[] data)

{

await Task.WhenAll(

addToBlobStorage(name, data),

updateIndex(name)

);

}

void addToBlobStorage(string name, byte[] data)

{

...

}

void updateIndex(string name)

{

...

}



EXAMPLE 3

• Process all files in a directory, 

return sum of results

void processFiles(string directory)

{

var files = await listFiles(directory);   

var tasks =  files.Select(f => process(f)).ToList();

await Task.WhenAll(tasks);

return tasks.Select(t => t.Result).Sum();   

}

list<string> listFiles(string directory)

{

...

}

int process(string file)

{

...

}



RELIABLE EXECUTION

• State of workflow is persisted as history of events. O B1

A
B2

B3

B4

O started

A() started

A returned -> [f1,f2,f3,f4]

B1(f1) started

B2(f1) started

B3(f3) started

B4(f4) started

B2 returned 32

B4 returned 0

B1 returned 120

B0 returned 1

O returned 153

• History can be inspected in storage for debugging / monitoring purposes!

• Can rehydrate intermediate states (after crash or inactivity) from history

• Proceed in episodes, each processes batch of events, billed as 1 function inv.



EXAMPLE: PARTIAL HISTORY ≈ INTERMEDIATE STATE

O started

A() started

A returned -> [f1,f2,f3,f4]

B1(f1) started

B2(f1) started

B3(f3) started

B4(f4) started

B2 returned 32

B4 returned 0

O B1

A ✓
B2✓

B3

B4B4✓≈



REHYDRATE STATE FROM HISTORY BY REPLAY

• Replay code but do not restart activities immediately, use placeholder task

• Substitute recorded results into placeholders during replay (A, B2, B4)

• At end of replay restart activities for remaining placeholders (B1, B3)

void processFiles(string directory)

{

var files = await listFiles(directory);   

var tasks =  files.Select(f => process(f)).ToList();

await Task.WhenAll(tasks);

return tasks.Select(t => t.Result).Sum();   

}

O started

A() started

A returned -> [f1,f2,f3,f4]

B1(f1) started

B2(f1) started

B3(f3) started

B4(f4) started

B2 returned 32

B4 returned 0



CAVEAT: CODE MUST SATISFY 2 REQUIREMENTS

• Determinism of orchestrators

Orchestrator must be deterministic, otherwise replay diverges

• Idempotence of activities

Activities that crash before persisting result are restarted during recovery

User responsibility : separate deterministic coordination from nondeterministic work



ACCIDENTAL NONDETERMINISM: 
MITIGATIONS? SOLUTIONS?

• Document common nondeterminism sources

• time of day, random generators, I/O, global static variables

• User must wrap these in activities, or use built-in deterministic versions

• Include static analysis tool to help find mistakes

• Some other potential ideas:

• Use language with effect system (e.g. Daan Leijen’s Koka)

• Automatic wrapping of request handlers (JavaScript), work w/ Christopher Meiklejohn



ENTITIES
= DURABLE APPLICATION STATE

• Entity = smallest piece of state, a “single key-value pair”, a virtual actor (Orleans)

• Runtime delivers “operations” (messages) to entities via ordered async channels

• Runtime executes operations on entities, one at a time. Operations can

• read and update state

• send messages

• perform external calls

• Durable: All state (incl. messages) reliably kept in cloud storage

Entities

≈ Actor Functions



EXAMPLE ENTITY: 
BANK ACCOUNT

• each entity identified by a (name,key) pair, e.g. 

(“AccountEntity”, “32974-234093-00”)

• Accessible via interface

public interface IAccount
{

Task<int> Get();
Task Modify(int Amount);

}

public class Account : IAccount
{

public int Balance { get; set; }

public Task<int> Get() 
{

return Task.FromResult(Balance);
}

public Task Modify(int Amount) 
{

Balance += Amount;
return Task.CompletedTask;

}

// boilerplate for class-based syntax
[FunctionName(nameof(Account))]
public static Task Run([EntityTrigger]

IDurableEntityContext ctx) =>
ctx.DispatchAsync<Account>(); 

}



CALL VS. SIGNAL

• An entity can signal another entity 

send message, fire and forget

• An orchestration can call an entity 

and wait for ack/result

• But entities cannot call entities (to prevent deadlock)

different from virtual actors in Orleans, which can deadlock.

signal

call

response



SYNERGY !

• Enables revolutionary novel synchronization construct: 

!!! Critical sections !!!

just kidding of course, that’s the most standard one of all; 

but we can’t usually do it in distributed systems because of failures!

• Effective for preventing unwanted races and interleavings (doh)

• Critical sections do not require special “failure” handling, 

such as ability to roll back effects

Orchestrations

≈ Workflow Functions

Entities

≈ Actor Functions



EXAMPLE: TRANSFER FUNDS

var fromAccount = new EntityId("Account", from);
var toAccount = new EntityId("Account", to);

using (await ctx.LockAsync(fromAccount, toAccount))
{

var source = context.CreateEntityProxy<IAccount>(fromAccount);
var destination = context.CreateEntityProxy<IAccount>(toAccount);

if (amount <= await source.Get())
{

await Task.WhenAll(
source.Modify(-transferAmount),
destination.Modify(transferAmount)

);
}

}



var fromAccount = new EntityId("AccountEntity", from);
var toAccount = new EntityId("AccountEntity", to);

using (await ctx.LockAsync(fromAccount, toAccount))
{

var source = context.CreateEntityProxy<IAccount>(fromAccount);
var destination = context.CreateEntityProxy<IAccount>(toAccount);

if (amount <= await source.Get())
{

await Task.WhenAll(
source.Modify(-transferAmount),
destination.Modify(transferAmount)

);
}

}

MESSAGE DIAGRAM
orchestration

fromAccount toAccount

lock

lock

ok
get

balance

add
add

okok

release

release



GUARANTEED DEADLOCK FREEDOM

Runtime-enforced rules prevent deadlocks:

• Runtime acquires locks in order (fixed global total order).

• Critical sections cannot be nested.

• Within a critical section:

• can call only entities that were locked.

• can signal only entities that were not locked.

• cannot call the same entity more than once in parallel.



STATUS

• Azure Durable Functions have been GA for about 2 years now.

• Popular & growing: 50% of Azure Functions users use them (recent survey)

• Entities & critical sections are a new feature, shipped last year,

(building on research w/ intern Christopher Meiklejohn)

• Much work left to be done

• formal semantics for “stateful serverless applications”

• build new implementation w/ more aggressive optimizations



ONGOING WORK: 
SEMANTICS & OPTIMIZATIONS



ABSTRACT SEMANTICS

→ 𝑚
𝑚 → 𝑚1

′𝑚2
′ …

ℎ 𝑚1𝑚2… → ℎ′𝑚1
′𝑚2

′ …

Client Transition

Task Transition

Instance Transition

• Two computation units:

• Stateless Tasks

• Stateful Instances

• Communication through messages

• State is event history



IMPLEMENTATION

• Distributed – multiple partitions

• Reliable – exactly/at least once 

• Executions are persisted incrementally

• Elastic – adapting to load changes

Partition 1 Partition 2

Queue Queue

Clients Clients

Log Log

Inst 1 Inst k

… …

Clients

Partition 3

Queue

Log

Inst n

…



IMPLEMENTATION 2.0

• Main sources of overhead: 

• Storage Accesses

• Network Communication

• Optimizations:

• Speculative Message Exchange

• In memory processing of same-partition messages

• Message Batching

• WIP Proof of correctness



DEV TOOLING AND EXPERIENCE

A tour of the programming experience with Durable Functions



HELPING DEVS BY...

• Preventing common errors via live code analysis

• Providing common patterns to quickly scaffold solutions

• Allowing them to use their preferred PL for the job
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MEETING CODE CONSTRAINTS

Activity
Activity

Activity

Activity

Activity

Deterministic Non-Deterministic

Orchestrator



LIVE CODE ANALYZER

Generating GUIDs

Reading Enviroment Variables

Reading DateTime objects

… and so on … 

Constraint Violations Live Code Analyzer

Alerts user of constraint violations

Suggests replay-safe APIs and 

other refactorings

Programmer Feedback



HELPING DEVS BY...

• Preventing common errors via live code analysis

• Providing common patterns to quickly scaffold solutions

• Allowing them to use their preferred PL for the job



GETTING UP TO SPEED WITH DURABLE

Quick-start samples and templates for each host PL

Fan-Out Fan-In Monitoring long-running workflows Timed Human-in-the-loop 

computation
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USE THE RIGHT PL FOR THE JOB

Stateful Serverless 

Execution Engine

C# JavaScript ……
Several

Frontends

Backend

• Open-sourced SDKs for .NET, 

JavaScript, TypeScript

• Extremely soon: SDKs for two highly-

requested host PLs

• Working to facilitate the creation of 

third-party SDKs



DEMO: BUILD A SERVERLESS BANK


