
PaSh: A parallelizing shell

PaSh: A parallelizing shell

or how to get from this:

PaSh: A parallelizing shell

or how to get from this:

PaSh: A parallelizing shell

or how to get from this: to this:

PaSh: A parallelizing shell

or how to get from this: to this:

PaSh: A parallelizing shell

or how to get from this: to this:

Joint work with:

And many others (in alphabetical order):

Nikos Vasilakis

Achilles Benetopoulos

Konstantinos MamourasShivam Handa

Lazar Cvetkovic

Martin RinardMichael Greenberg

Thurston Dang

Used by everyone!

• Orchestration

• Kubernetes deployment

• Docket containers …

• Data processing:

• Downloading

• Extracting

• Preprocessing

• Querying

• Automation Tasks

• Configuration

• Installation

base="ftp://ftp.ncdc.noaa.gov/pub/data/noaa";
for y in {2015..2019}; do
curl $base/$y | grep gz | tr -s" " | cut -d" " -f9 |
sed "s;^;$base/$y/;" | xargs -n 1 curl -s | gunzip |
cut -c 89-92 | grep -iv 999 | sort -rn | head -n 1 |
sed "s/^/Maximum temperature for $y is: /"
done

Check all possible clusters, as your .KUBECONFIG may have multiple contexts:
kubectl config view -
o jsonpath='{"Cluster name\tServer\n"}{range .clusters[*]}{.name}{"\t"}{.cluster.server}{"\n"}{end}'

Select name of cluster you want to interact with from above output:
export CLUSTER_NAME="some_server_name"

Point to the API server referring the cluster name
APISERVER=$(kubectl config view -o jsonpath="{.clusters[?(@.name==\"$CLUSTER_NAME\")].cluster.server}")

Gets the token value
TOKEN=$(kubectl get secrets -o jsonpath="{.items[?(@.metadata.annotations['kubernetes\.io/service-
account\.name']=='default')].data.token}"|base64 --decode)

Explore the API with TOKEN
curl -X GET $APISERVER/api --header "Authorization: Bearer $TOKEN" --insecure

echo "Building parser..."
eval $(opam config env)
cd compiler/parser
echo "|-- installing opam dependencies..."
make opam-dependencies
echo "|-- making libdash..."
make libdash
echo "|-- making parser..."
make
cd ../../
echo "Building runtime..."
cd runtime/ ; make ; cd ../

The Problem

Shell scripts are mostly sequential! :’(

Parallelism could help

Parallelism could help

But it requires manual effort:

Parallelism could help

But it requires manual effort:

• Using specific command flags (e.g., sort -p, make -jN)

Parallelism could help

But it requires manual effort:

• Using specific command flags (e.g., sort -p, make -jN)

• Using semi-automatic restricted parallelization tools (e.g., GNU parallel)

Parallelism could help

But it requires manual effort:

• Using specific command flags (e.g., sort -p, make -jN)

• Using semi-automatic restricted parallelization tools (e.g., GNU parallel)

• Manually parallelizing using the background (&) operator

Parallelism could help

But it requires manual effort:

• Using specific command flags (e.g., sort -p, make -jN)

• Using semi-automatic restricted parallelization tools (e.g., GNU parallel)

• Manually parallelizing using the background (&) operator

• Manually parallelizing by rewriting parts of a script in parallel frameworks (e.g., MR)

Challenges

Challenges

1. Lack of static information:

Challenges

1. Lack of static information:

• Shell execution depends on dynamic components (file system, environment variables, etc)

Challenges

1. Lack of static information:

• Shell execution depends on dynamic components (file system, environment variables, etc)

• This makes a static parallelization procedure that is always sound and effective impossible

Challenges

1. Lack of static information:

• Shell execution depends on dynamic components (file system, environment variables, etc)

• This makes a static parallelization procedure that is always sound and effective impossible

2. Subtle parallelism:

Challenges

1. Lack of static information:

• Shell execution depends on dynamic components (file system, environment variables, etc)

• This makes a static parallelization procedure that is always sound and effective impossible

2. Subtle parallelism:

• Properties such as commutativity, or independence by key are not satisfied by many commands

Challenges

1. Lack of static information:

• Shell execution depends on dynamic components (file system, environment variables, etc)

• This makes a static parallelization procedure that is always sound and effective impossible

2. Subtle parallelism:

• Properties such as commutativity, or independence by key are not satisfied by many commands

• This requires a finer parallelism model that captures the properties of shell commands

Challenges

1. Lack of static information:

• Shell execution depends on dynamic components (file system, environment variables, etc)

• This makes a static parallelization procedure that is always sound and effective impossible

2. Subtle parallelism:

• Properties such as commutativity, or independence by key are not satisfied by many commands

• This requires a finer parallelism model that captures the properties of shell commands

3. Arbitrary black-box commands:

Challenges

1. Lack of static information:

• Shell execution depends on dynamic components (file system, environment variables, etc)

• This makes a static parallelization procedure that is always sound and effective impossible

2. Subtle parallelism:

• Properties such as commutativity, or independence by key are not satisfied by many commands

• This requires a finer parallelism model that captures the properties of shell commands

3. Arbitrary black-box commands:

• Shell commands are written in arbitrary languages and are constantly updated or modified

Challenges

1. Lack of static information:

• Shell execution depends on dynamic components (file system, environment variables, etc)

• This makes a static parallelization procedure that is always sound and effective impossible

2. Subtle parallelism:

• Properties such as commutativity, or independence by key are not satisfied by many commands

• This requires a finer parallelism model that captures the properties of shell commands

3. Arbitrary black-box commands:

• Shell commands are written in arbitrary languages and are constantly updated or modified

• This makes an automated command analysis infeasible and a one-time manual analysis useless

PaSh

PaSh

A tool that:

PaSh

A tool that:

• exposes latent data parallelism in shell scripts

PaSh

A tool that:

• exposes latent data parallelism in shell scripts

• is a lightweight layer on top of bash

Input Script

...
cat $files | sort

...

PaSh Preprocessor

Output Script

...
. pash_runtime

...

PaSh Input Script

...
cat $files | sort

...

PaSh Preprocessor

Output Script

...
. pash_runtime

...

pash_runtime

PaSh Input Script

...
cat $files | sort

...

PaSh Preprocessor

Output Script

...
. pash_runtime

...

pash_runtime

PaSh

cat $files |
sort

Input Script

...
cat $files | sort

...

PaSh Preprocessor

Output Script

...
. pash_runtime

...

pash_runtime

PaSh

AST

cat $files

|

sort

cat $files |
sort

Input Script

...
cat $files | sort

...

PaSh Preprocessor

Output Script

...
. pash_runtime

...

pash_runtime

PaSh

AST

cat $files

|

sort

Expand
cat f1 f2

|

sort

Expanded

ASTcat $files |
sort

Input Script

...
cat $files | sort

...

PaSh Preprocessor

Output Script

...
. pash_runtime

...

pash_runtime

PaSh

AST

cat $files

|

sort

Expand Compile
cat f1 f2

|

sort

Expanded

AST

cat sort

f1

f2

DFG

cat $files |
sort

Input Script

...
cat $files | sort

...

PaSh Preprocessor

Output Script

...
. pash_runtime

...

pash_runtime

PaSh

AST

cat $files

|

sort

Optimize

DFG

Transform

Expand Compile
cat f1 f2

|

sort

Expanded

AST

cat sort

f1

f2

DFG

sort -m
sortf1

sortf2

Optimized DFG

cat $files |
sort

Input Script

...
cat $files | sort

...

PaSh Preprocessor

Output Script

...
. pash_runtime

...

pash_runtime

PaSh

AST

cat $files

|

sort

Optimize

DFG

Transform

Expand Compile
cat f1 f2

|

sort

Expanded

AST

cat sort

f1

f2

DFG

sort -m
sortf1

sortf2

Optimized DFG

cat $files |
sort

Input Script

...
cat $files | sort

...

PaSh Preprocessor

Output Script

...
. pash_runtime

...

Annotations

pash_runtime

PaSh

AST

cat $files

|

sort

Optimize

DFG

Transform

Expand Compile
cat f1 f2

|

sort

Expanded

AST

cat sort

f1

f2

DFG

sort -m
sortf1

sortf2

Optimized DFG

cat $files |
sort

mkfifo /tmp/t1 /tmp/t2
sort f1 > /tmp/t1 &
sort f2 > /tmp/t2 &
sort -m /tmp/t1 /tmp/t2 &
wait
rm -f /tmp/t1 /tmp/t2

Input Script

...
cat $files | sort

...

PaSh Preprocessor

Output Script

...
. pash_runtime

...

Annotations

High speedups!!!

Average: 6.56x, Maximum: 15.81x, Minimum: 0.89x

Come chat ☺

• If you want to learn more

• If you are interested in trying out PaSh

• If you have long running scripts that might benefit from parallelism

• If you would like to collaborate

Come and chat in the poster session ☺

