
PaSh: A parallelizing shell

or how to get from this: to this:

github.com/andromeda/pash

Joint work with:

And many others (in alphabetical order):

Nikos Vasilakis

Achilles Benetopoulos

Kostas MamourasShivam Handa

Lazar Cvetkovic

Martin Rinard

Michael GreenbergThurston Dang

Tammam Mustafa Radha Patel

shell

Used by everyone!

• Orchestration

• Kubernetes deployment

• Docket containers …

• Data processing:

• Downloading

• Extracting

• Preprocessing

• Querying

• Automation Tasks

• Configuration

• Installation

base="ftp://ftp.ncdc.noaa.gov/pub/data/noaa";
for y in {2015..2019}; do
curl $base/$y | grep gz | tr -s" " | cut -d" " -f9 |
sed "s;^;$base/$y/;" | xargs -n 1 curl -s | gunzip |
cut -c 89-92 | grep -iv 999 | sort -rn | head -n 1 |
sed "s/^/Maximum temperature for $y is: /"

done

But …

Shell scripts are mostly sequential!

Parallelizing requires a lot of manual effort:

• Using specific command flags (e.g., sort -p, make -jN)

• Using semi-automatic restricted parallelization tools (e.g., GNU parallel)

• Rewriting parts of a script in languages that support parallelism (e.g. Erlang)

What did we do to deserve this??? :’(

PaSh

PaSh

A JiT shell2shell compiler that:

• exposes latent data parallelism in shell scripts

• is a lightweight layer on top of bash

• Executes the optimized version of the script on bash

• Negligible slowdown for non parallelizable scripts

• Correctness w.r.t. bash without implementing a new shell

Not so fast!!!

You need 3 badges
to achieve
data-parallelism!

We have to go through them!!!

Subtle Parallelism Arbitrary black-box

commands

Lack of static

information

Challenge: Shell Data Parallelism is Subtle

• Parallel frameworks such as MapReduce or Spark

• Either require commutativity

• Or key-by independence to achieve parallelism

Round Robin Partition By Key

Challenge: Shell Data Parallelism is Subtle

• Data parallelism in the shell is trickier

• Commutativity and independence based on key is rare

• Commands most often read from their inputs in sequence

• This order matters for the output

• For example, reads in1, its stdin, and then in2

• We need a model that captures a parallelizable subset of the shell

• That also captures order of command input consumption

grep "foo" in1 - in2

• The following pipeline would be translated to:

• Model defines a shell fragment with no scheduling constraints

• Intuitively: commands composed with &, |

• The expressiveness allows us to define a bidirectional correspondence between:

• Shell programs in this fragment

• Dataflow graphs in our model

Solution: Order-aware dataflow model

cat in1 in2 | grep "foo" in3 - cat grep

in1

in2

in3

• On the graph we have defined semantics preserving transformations.

• Main parallelization transformation:

• Intuition: Divide and Conquer parallelism

• A node that is preceded by a cat with a sequence of inputs

• And can be broken up in a map and aggregate stage

• Can be parallelized by applying the map on each of the inputs

• And then applying the aggregate

• Auxiliary transformations enable parallelization by inserting cat + split.

Solution: Order-aware dataflow model

cat grep

in1

in2

cat

grepin1

grepin2

map

aggregate

Proofs in the paper!

Subtle Parallelism
was defeated !!!

Challenge: Arbitrary black-box commands

• Restricted programming frameworks (MapReduce, Spark, etc)
• offer a limited set of constructs

• can be easily mapped to a dataflow abstraction

• The shell is used to compose:
• arbitrary commands

• written in arbitrary languages

• and are updated (or modified) over time

• This makes automated analysis infeasible

• Any one-time effort quickly obsolete and useless.

Solution: Node Correspondence Framework

Users describe how to:

• Map a command to a dataflow node (if possible)
• Inputs, outputs, parallelizability from arguments

• How to map a dataflow node to a command
• Instantiating command arguments from inputs, outputs, metadata

• This is achieved by defining two python functions

• Developer instantiates correspondence once for each command
• The goal is for this to be used by command developers or other experts

• Library of correspondence can be inspected and shared

Solution: Node Correspondence Framework

• Many commands have restricted, well-defined behavior

• Designed an annotation language
• Annotation uniquely defines the two correspondence functions

• Language guided by study of POSIX and GNU Coreutils

• Part of annotation for cat:

• Defined annotations for 53 commands

• More details in our EuroSys 21 paper

{
"command": "cat",
"cases": [
...,
{
"predicate": "default",
"class": "parallelizable",
"aggregator": "cat",
"inputs": ["args[:]"],
"outputs": ["stdout"]

}]
}

Arbitrary black-box
commands
were defeated !!!

Combining the first 2 badges

• Compiler:
• Given a shell script

• Compiles it to a dataflow graph if possible

• Applies parallelizing transformations

• Compiles it back to a shell script

• Piggybacking on the shell to execute the parallel script

cat

grep "foo"in1

grep "foo"in2

mkfifo /tmp/t1 /tmp/t2
grep "foo" in1 > /tmp/t1 &
grep "foo" in2 > /tmp/t2 &
cat /tmp/t1 /tmp/t2 &
wait
rm -f /tmp/t1 /tmp/t2

For more details see our talk on

EuroSys 21 next week!

Challenge: Lack of Static information

• Shell execution depends on several dynamic components:
• File system

• Current directory

• Environment variables

• Unexpanded strings

cat $DIR/* | tr A-Z a-z | tr -cs A-Za-z '\n' | # (spell)
sort | uniq | comm -13 $DICT -

• Very difficult to have a static parallelization procedure that is both:
• Sound

• Somewhat effective

Solution: JiT compilation process

• PaSh switches between interpretation and compilation
• Calling the compiler as late as possible

• Provides critical information to the compiler:
• State of shell

• Variables

• Directory

• Files and even their contents(!)

Solution: JiT compilation process

• Preprocessor:
• Parses script

• Performs analysis to find potential dataflow regions

• Replaces potential DFG regions with calls to runtime

• Unparses script

• Executes it with bash

cat $DIR/* | tr A-Z a-z | tr -cs A-Za-z '\n' |
sort | uniq | comm -13 $DICT - > out ;

cat out | wc -l | sed 's/$/ mispelled words!/'

source pash_runtime.sh /tmp/pash_ast.TZDAyhVaFr ;
source pash_runtime.sh /tmp/pash_ast.PDmnT7PUug

Solution: JiT compilation process

Runtime is just a shell script:

1) Save shell state and set pash default state

• E.g., variables, previous exit code, etc

2) Call the parallelizing compiler

• Providing information about the current state

3) Revert the shell state

4) If the compiler has succeeded:

• Run the produced parallel script

• Else run the original script

5) Save shell state and set pash default state

6) Finish up pash work

• E.g., measure (4) exec time

7) Revert shell state

-- bash -- | -- pash --
... |

\----(1)----\
| ...
| (2)
| ...

/----(3)----/
... |
(4) |
... |

\----(5)----\
| ...
| (6)
| ...

/----(7)----/
... |

Lack of static
information
was defeated !!!

Combining all 3 badges

Order-aware

Dataflow model

Node Correspondence

Framework

Just in Time

compilation

Demo Time

Evaluation

Evaluation

Two aspects:

• Performance Evaluation

• Preliminary Correctness Evaluation

Parallelizable Non parallelizable

+ PaSh awareness goes a long way!

cat $IN6 | awk '{print $2, $0}' | sort -nr | cut -d ' ' -f 2 (1.01×)
e.g. #26

cat $IN6 | sort -nr -k2 | cut -d ' ' -f 1 (8.1× !!1!1)

Pipelines in the wild

Hadoop only focuses on this part

This part is not the focus of

traditional parallelization

frameworks but parallelizing it has

the biggest impact

fetch, preprocess, cleanup, filter calculate

33m58s 10m4s

pash -w 16

bash

2.52×
combined speedup

for the full program

12.31×
speedup for

preprocessing

2.04×
speedup for

preprocessing

16m39s 49s

82GB (5y weather data)

Case Study: NOAA Weather Analysis

Preliminary correctness evaluation (WIP)

• Smoosh [2] test suite
• Comprehensive POSIX shell test suite

• Started from the bottom:

• Now we are here:

• Meanwhile bash:

[2] Greenberg, Michael, and Austin J. Blatt. "Executable formal semantics for the POSIX shell." POPL. 2019.

xxxxxxxxxx.xxxxxxxxxx.xx..xxxxxxxxxx.x.xxx.xxxxxxxx.xxxx...xx.xxxxxxxx
xx.xxxx.xx..xxxxxxxxxxxxxxxxxxxx.xxxxxxxxxxx.xxxxxxx.xxxxxxx.xxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
shell_tests.sh: 20/174 tests passed

xxx.x....x.xxxx...x...x...x..x.xxxx.....xx..xx.x.....x......x.xx.xx.x.
.xx.x.x......xx.xx...xx........xxxxx..xx.x....x.x......x.......x...xxx
xxxx.....x.xx.x..xxxxx..xxxx.xxxxx
shell_tests.sh: 98/174 tests passed

..x.x....x.xxxx...x.......x..x..xxx......x..xx.x.....x......x.xx.xx.x.

.x..x.x..........................x.......x......x...........x........x

.xx......x..x................x..x.
shell_tests.sh: 136/174 tests passed

Conclusion

Discussion

• Shell scripts have mostly escaped the PL community attention
• Some notable exceptions: Smoosh [2], dgsh [3], Shark [4]

• This is mostly because:
1) Commands have arbitrary behaviors and cannot be easily analyzed

2) Shell’s dynamic nature makes static analysis incorrect or ineffective

3) Shell semantics is Black magic

• Recent work [2] addressed (3)

• PaSh makes a step towards addressing (1) and (2)
• Enabling further study of the performance and correctness of shell scripts

[3] D. Spinellis and M. Fragkoulis, "Extending Unix Pipelines to DAGs," in IEEE Transactions on Computers. 2017.

[4] Berger, Emery D. "Optimizing Shell Scripting Languages." 2003.

[2] Greenberg, Michael, and Austin J. Blatt. "Executable formal semantics for the POSIX shell." POPL. 2019.

Thank you :)

• PaSh is open source

• Upcoming talk at EuroSys next week (ask me for preprint)

• Upcoming HotOS paper and panel on the future of the shell

• More exciting research on the shell on its way!

github.com/andromeda/pash

	Slide 1: PaSh: A parallelizing shell
	Slide 2: Joint work with:
	Slide 3: shell
	Slide 4: Used by everyone!
	Slide 5: But …
	Slide 6: PaSh
	Slide 7: PaSh
	Slide 8: Not so fast!!!
	Slide 9: We have to go through them!!!
	Slide 10: Challenge: Shell Data Parallelism is Subtle
	Slide 11: Challenge: Shell Data Parallelism is Subtle
	Slide 12: Solution: Order-aware dataflow model
	Slide 13: Solution: Order-aware dataflow model
	Slide 14
	Slide 15: Challenge: Arbitrary black-box commands
	Slide 16: Solution: Node Correspondence Framework
	Slide 17: Solution: Node Correspondence Framework
	Slide 18
	Slide 19: Combining the first 2 badges
	Slide 20: Challenge: Lack of Static information
	Slide 21: Solution: JiT compilation process
	Slide 22: Solution: JiT compilation process
	Slide 23: Solution: JiT compilation process
	Slide 24
	Slide 25: Combining all 3 badges
	Slide 26: Demo Time
	Slide 27: Evaluation
	Slide 28: Evaluation
	Slide 29
	Slide 30: Case Study: NOAA Weather Analysis
	Slide 31: Preliminary correctness evaluation (WIP)
	Slide 32: Conclusion
	Slide 33: Discussion
	Slide 34: Thank you :)

