
Practically Correct, Just-in-Time
Shell Script Parallelization

or how to get from this: to this:

github.com/binpash/pashbinpa.sh

Portland State University -- Spring 2023

binpa.sh

Joint work with:

Nikos Vasilakis

Brown

Michael Greenberg

Stevens

Achilles Benetopoulos

UCSC

Kostas Mamouras

Rice

Shivam Handa

MIT

Lazar Cvetkovic

ETH

Martin Rinard

MIT

Thurston Dang

p: MIT now: Google

Tammam Mustafa

p: MIT now: Google

Radha Patel

p: MIT

Jan Bielak

Staszic High

Dimitris Karnikis

p: Aarno Labs

shell

Used by everyone!

• Orchestration

• Kubernetes deployment

• Docket containers …

• Data processing:

• Downloading

• Extracting

• Preprocessing

• Querying

• Automation Tasks

• Configuration

• Installation

base="ftp://ftp.ncdc.noaa.gov/pub/data/noaa";
for y in {2015..2019}; do
curl $base/$y | grep gz | tr -s" " | cut -d" " -f9 |
sed "s;^;$base/$y/;" | xargs -n 1 curl -s | gunzip |
cut -c 89-92 | grep -iv 999 | sort -rn | head -n 1 |
sed "s/^/Maximum temperature for $y is: /"

done

… for real

from the 2021 state of the octoverse: https://octoverse.github.com

Why? … well, the shell is great

• Universal Composition
• Composing arbitrary commands using files and pipes

• Allows users to create powerful but succinct scripts

• Unix native
• It is well suited to the Unix abstractions (files, strings, etc)

• Offers great control and management of the file system

• Interactive
• The complete system environment is accessible

• Short commands and flags allows for quick experimentation

An example: Temperature Analysis

• This script computes the max temp in the US for the years 2015-2019

• To do so it:
• Fetches the indexes of temperature data archives

• Downloads the archived temp data

• Extracts the raw data

• Cleans it

• Computes the maximum

• The preprocessing part is taken from the Hadoop book
• Until the gunzip

• The final two lines replace the MapReduce program from Hadoop book
• The MapReduce equivalent in Java is 150 lines of code :’)

base="ftp://ftp.ncdc.noaa.gov/pub/data/noaa";
for y in {2015..2019}; do
curl $base/$y | grep gz | tr -s" " | cut -d" " -f9 |
sed "s;^;$base/$y/;" | xargs -n 1 curl -s | gunzip |
cut -c 89-92 | grep -iv 999 | sort -rn | head -n 1 |
sed "s/^/Maximum temperature for $y is: /"
done

The shell is great but …

Shell scripts are mostly sequential!*

Parallelizing requires a lot of manual effort:

• Using specific command flags (e.g., sort -p, make -jN)

• Using parallelization tools (e.g., GNU parallel)

• Rewriting script in parallel languages (e.g. Erlang)

What did we do to deserve this??? :’(

*Actually they have a ton more issues but we will come to that in the end

PaSh

PaSh

Dataflow Model

Shell2Dataflow Dataflow2Shell

Parallelizing

Transformations

No tight coupling: Could work on top of any shell!

Hadoop only focuses on this part

This part is not the focus of

traditional parallelization

frameworks but parallelizing it has

the biggest impact

Preprocessing Processing

33m58s 10m4s

pash -w 16

bash

2.52×
combined speedup

for the full program

12.31×
speedup for

processing

2.04×
speedup for

preprocessing

16m39s 49s

82GB (5y weather data)

PaSh on Temperature Analysis

PaSh Insights

Parallelizing

Transformations

Order Aware Dataflow ModelCommand Specification Framework

grep -v –f pats.txt in.txt

Command

Specifications

grep -v

pats

in

✨Transformations proven correct ✨

Read the PaSh papers at EuroSys 21 and ICFP 21 for more!

PaSh -- The static way
You should
do a static
analysis!

You should
do a static
analysis!

You should
do a static
analysis!

You should
do a static
analysis!

You should
do a static
analysis!

That should be OK, right?

Conservative or unsound – Choose one

• The shell is dynamic:
• Current directory

• Environment variables

• Unexpanded strings

• File system

• Static parallelization has to choose:
• Sound but conservative

• Unsound and optimistic

IN=${IN:-$TOP/pg}
mkdir $IN
cd $IN
echo 'Downloading, be patient...'
wget $SOURCE/data/pg.tar.xz
if [$? -ne 0]; then
echo "Download failed!"
exit 1

fi
cat pg.tar.xz | tar -xJ

cd $TOP
OUT=${OUT:-$TOP/output}
mkdir -p "$OUT"
for input in $(ls ${IN}); do
cat "$IN/$input" |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > "${OUT}/${input}.out"

done

PaSh-JIT

Just in time parallelization

• PaSh-JIT tries to parallelize as-late-as-possibleTM

• Provides critical information to the compiler:
• State of shell, Variables, Directory, Files

• Not only correct, but also faster!!!

Just-in-time? How?

• By constantly switching between evaluation and parallelization

• PaSh-JIT is a regulator
• Decides what is the next thing the shell will execute

Just in time parallelization

OUT=${OUT:-$TOP/out}
for input in $(ls ${IN}); do
cat "$IN/$input" |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > "${OUT}/${input}.out"

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in

Just in time parallelization

OUT=${OUT:-$TOP/out}
for input in $(ls ${IN}); do
cat "$IN/$input" |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > "${OUT}/${input}.out"

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in

Just in time parallelization

OUT=/pash/out
for input in $(ls ${IN}); do
cat "$IN/$input" |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > "${OUT}/${input}.out"

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in

Just in time parallelization

OUT=/pash/out
for input in $(ls ${IN}); do
cat "$IN/$input" |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > "${OUT}/${input}.out"

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in
OUT=/pash/out

Just in time parallelization

OUT=/pash/out
for input in in1 in2; do
cat "$IN/$input" |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > "${OUT}/${input}.out"

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in
OUT=/pash/out

Just in time parallelization

OUT=/pash/out
for input in in1 in2; do
cat "$IN/$input" |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > "${OUT}/${input}.out"

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in
OUT=/pash/out
input=in1

Just in time parallelization

OUT=/pash/out
for input in in1 in2; do
cat "$IN/$input" |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > "${OUT}/${input}.out"

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in
OUT=/pash/out
input=in1

Expanding

Just in time parallelization

OUT=/pash/out
for input in in1 in2; do
cat "$IN/$input" |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > "${OUT}/${input}.out"

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in
OUT=/pash/out
input=in1

Just in time parallelization

OUT=/pash/out
for input in in1 in2; do
cat /pash/in/in1 |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > /pash/out/in1.out

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in
OUT=/pash/out
input=in1

Just in time parallelization

OUT=/pash/out
for input in in1 in2; do
cat /pash/in/in1 |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > /pash/out/in1.out

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in
OUT=/pash/out
input=in1

Parallelize?

Just in time parallelization

OUT=/pash/out
for input in in1 in2; do
mkfifo f1 f2 f3 f4
cat /pash/in/in1 | split f1 f2 &
... &
sort < f1 > f3 &
sort < f3 > f4 &
sort –m f3 f4 > /pash/out/in1.out
rm f1 f2 f3 f4

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in
OUT=/pash/out
input=in1

Parallelize?

Success!

Just in time parallelization

OUT=/pash/out
for input in in1 in2; do
mkfifo f1 f2 f3 f4
cat /pash/in/in1 | split f1 f2 &
... &
sort < f1 > f3 &
sort < f3 > f4 &
sort –m f3 f4 > /pash/out/in1.out
rm f1 f2 f3 f4

done

Shell mode PaSh mode

TOP=/pash
IN=/pash/in
OUT=/pash/out
input=in1

Challenge: How to JIT?

• Without modifying underlying interpreter

• Cannot just add a branch in the bash interpreter loop

• Without being observable to user

• Different shell configs like `set -e` expose info

• With minimal overhead

• Frequent transitions between shell and pash mode

Solution Architecture

Script

Instrumented
Script

...
source jit.sh
...

Preprocessor JIT Engine

Shell state

- Variables

- Files

- …

User Shell

Preprocessor

• Replaces potentially parallelizable (DFG) regions with calls to the JIT
• Intuitively, commands composed with pipes | and the background & operator

• Stores original region for the JIT engine to access

• Preprocessing is optimistic; the actual decision is made at runtime
• Syntactic analysis (no knowledge about commands and their behavior)

source jit.sh "$region8" # cd $TOP
OUT=${OUT:-$TOP/output}
source jit.sh "$region9" # mkdir -p "$OUT"
for input in $(ls ${IN}); do
source jit.sh "$region10" # cat "$IN...

done

cd $TOP
OUT=${OUT:-$TOP/output}
mkdir -p "$OUT"
for input in $(ls ${IN}); do
cat "$IN/$input" |
tr -sc '[A-Z][a-z]' '[\012*]’ |
sort > "${OUT}/${input}.out"

done

JIT Engine

• Hides compilation from the perspective of the shell

• Just a shell script
• Heavily engineered for minimal latency

Complete PaSh-JIT overview

Script

Instrumented
Script

...
source jit.sh
...

Preprocessor

Parsing

Library

CompilerJIT Engine

Shell state

- Variables

- Files

- …

User Shell

Compiler

• Original PaSh was a shell-to-shell compiler
• Input script is compiled to a parallel output script

• Compiler is on critical path 😢
• Initialization happens on each invocation (10 – 1000 in a script)

• Work can not be reused across compiler invocations

init compile init compile init compile

Different Invocations

Solution: Compilation Server

• Modify compiler to long-running compilation server
• Communication through UNIX domain sockets

• Reduces latency!
• Initialization happens once

• Also enables additional optimizations
• Parallelization of independent fragments (e.g., iterations that touch different files)

• Profile-guided optimizations (e.g., configuring parallelization width)

init compile compile compile compile

Compilation History available to the server

Evaluation

Evaluation: Correctness

- 1007 assertions

- 408 tests

- 29k LOC

- Covers all shell behavior

- Many edge cases

Evaluation: POSIX test suite

• Out of the 408 tests
• Bash passes 376 and fails 32 tests

• PaSh-JIT passes 374 and fails 34 tests

• Divergence in these two tests is only in the exit status
• Both return with an error, though different code

• Other shells compared to bash:

• Various shell failures on POSIX tests:

Bash succeeds

X fails

dash 20

ksh 22

mksh 29

posh 52

yash 20

By following a lightweight shim approach

(instead of reimplementing) we achieve

very high compatibility with bash ✨

Evaluation: Performance

• Evaluating on 82 shell scripts (4 suites and 11 standalone scripts)

Avg speedups: PaSh-JIT (x5.8) – PaSh-AOT (x2.9)

Conclusion

Conclusion

• Shells were angry that we tried to parallelize statically

• We can make them happy by being dynamic

• Are we done?

The shell has more problems…

• Error-proneness
• accidentally `rm -rf /` ⚰️

• Hard to learn
• still googling for if-then-else shell syntax

• Redundant recomputation
• we have to use Makefiles etc

• Lack of support for contemporary deployments
• managing a distributed cluster

[1] Sarah Spall, Neil Mitchell, and Sam Tobin-Hochstadt. “Build scripts with Perfect Dependencies.“OOPSLA. 2020.

Recent exceptions: Rattle [1] and Riker [2]

[2] Charlie Curtsinger, and Daniel W. Barowy. “Riker: Always-Correct and Fast Incremental Builds from Simple

Specifications “ATC. 2022.

Challenging aspects of the shell

Script Execution

Environment State

Lack of generality Hard compliance Lack of precision

Our solutions

Script Execution

Environment State

Command specifications Shell to shell compiler JIT architecture

Our infrastructure is an enabler

Script

Instrumented
Script

...
source jit.sh
...

Preprocessor

Parsing

Library

Your analysis

here !!!
JIT Engine

User shell Shell state

- Variables

- Files

- …

Some exciting future directions

• A shell monitor that ensures that safety/security props are not violated

• A fully distributed shell

• An incremental execution shell

• Talk to us if you have ideas!

Practical impact and availability

• PaSh is open source and hosted by the Linux Foundation

• It is virtually indistinguishable from bash (406/408 POSIX tests)

• And requires no modifications/reimplementation

• Download it and play binpa.sh github.com/binpash/pash

binpa.sh

Backup slides

Wait, we have to go through them!!!

Arbitrary black-box

commands

Subtle Parallelism

How does PaSh do that?

Challenge: Arbitrary black-box commands

• Restricted programming frameworks (MapReduce, Spark, etc)
• offer a limited set of constructs

• can be easily mapped to a dataflow abstraction

• The shell is used to compose:
• arbitrary commands

• written in arbitrary languages

• and are updated (or modified) over time

• This makes automated analysis infeasible

• Any one-time effort quickly obsolete and useless.

Solution: Command Specification Framework

For each command , developers describe how to:

• Map its invocation to a dataflow node (if possible)
• Inputs, outputs, parallelizability from arguments

• Map a dataflow node to a invocation

• Arguments from inputs, outputs, metadata

• By defining two python functions

grep -v –f pats.txt in.txt

Command

Specifications

grep -v

pats

in

Command Specs are shareable

• Developer instantiates correspondence once for each command

• The goal is for this to be used by
• command developers or other experts

• not users!

• Library of correspondence can be
• inspected

• shared

grep -v –f pats.txt in.txt

Command

Specifications

grep -v

pats

in

Command Spec Library

• We did a study of all POSIX and GNU Coreutils commands

• For POSIX, about 30% are pure
• They write on a well-defined set of files and read from a set of files

• The rest are side-effectful (e.g., mv, rm, chmod)

• Out of those, about 70% (~21% in total) are parallelizable
• 2/3 are trivially parallelizable, we simply concatenate parallel outpus, e.g., grep

• 1/3 need a non-trivial aggregator, e.g., sort needs a merge

Solution: Node Correspondence Framework

• Furthermore, most commands have restricted, well-defined behavior

• Designed an annotation language
• Annotation uniquely defines the two correspondence functions

• Language guided by the POSIX and GNU Coreutils study

• Part of annotation for cat:

• Defined annotations for 53 commands

• More details in our EuroSys 21 paper

{
"command": "cat",
"cases": [
...,
{
"predicate": "default",
"class": "parallelizable",
"aggregator": "cat",
"inputs": ["args[:]"],
"outputs": ["stdout"]

}]
}

Challenge: Shell Data Parallelism is Subtle

• Parallel frameworks such as MapReduce or Spark

• Either require commutativity

• Or key-by independence to achieve parallelism

Round Robin Partition By Key

Challenge: Shell Data Parallelism is Subtle

• Data parallelism in the shell is trickier

• Commutativity and independence based on key is rare

• Commands most often read from their inputs in sequence

• This order matters for the output

• For example, reads in1, its stdin, and then in2

• We need a model that captures a parallelizable subset of the shell

• That also captures order of command input consumption

grep "foo" in1 - in2

• The following pipeline would be translated to:

• Model defines a shell fragment with no scheduling constraints

• Roughly: commands composed with &, |

• The dataflow ends when encountering ;, &&, or control flow

• The expressiveness allows us to define a bidirectional correspondence between:

• Shell programs in this fragment

• Dataflow graphs in our model

Solution: Order-aware dataflow model

cat in1 in2 | grep "foo" in3 - cat grep

in1

in2

in3

• On the graph we have defined semantics preserving transformations.

• Main parallelization transformation:

• Intuition: Divide and Conquer parallelism

• A node that is preceded by a cat with a sequence of inputs

• And can be broken up in a map and aggregate stage

• Can be parallelized by applying the map on each of the inputs

• And then applying the aggregate

• Auxiliary transformations enable parallelization by inserting cat + split.

Solution: Order-aware dataflow model

cat grep

in1

in2

cat

grepin1

grepin2

map

aggregate

Proofs in our ICFP21 paper!

Dependency Untangling

• In the following script, each grep executes after the previous is done

• But the first two are completely independent

• Compilation server dynamically tracks dependencies
• Allows independent regions to run in parallel

grep "user1" in1 in2 > out1
grep "user2" in3 in4 > out2
grep "error" out1 out2 > out

DFG1

in1

in2

out1

DFG2

in3

in4

out2

out

time

DFG1

out1

out2

Teaser: Distribution

	Slide 1: Practically Correct, Just-in-Time Shell Script Parallelization
	Slide 3: Joint work with:
	Slide 4: shell
	Slide 5: Used by everyone!
	Slide 6: … for real
	Slide 7: Why? … well, the shell is great
	Slide 8: An example: Temperature Analysis
	Slide 9: The shell is great but …
	Slide 10: PaSh
	Slide 11: PaSh
	Slide 12: PaSh on Temperature Analysis
	Slide 13: PaSh Insights
	Slide 15: PaSh -- The static way
	Slide 16: That should be OK, right?
	Slide 17: Conservative or unsound – Choose one
	Slide 18: PaSh-JIT
	Slide 19: Just in time parallelization
	Slide 20: Just-in-time? How?
	Slide 21: Just in time parallelization
	Slide 22: Just in time parallelization
	Slide 23: Just in time parallelization
	Slide 24: Just in time parallelization
	Slide 25: Just in time parallelization
	Slide 26: Just in time parallelization
	Slide 27: Just in time parallelization
	Slide 28: Just in time parallelization
	Slide 29: Just in time parallelization
	Slide 30: Just in time parallelization
	Slide 31: Just in time parallelization
	Slide 32: Just in time parallelization
	Slide 33: Challenge: How to JIT?
	Slide 34: Solution Architecture
	Slide 35: Preprocessor
	Slide 36: JIT Engine
	Slide 37: Complete PaSh-JIT overview
	Slide 38: Compiler
	Slide 39: Solution: Compilation Server
	Slide 40: Evaluation
	Slide 41: Evaluation: Correctness
	Slide 42: Evaluation: POSIX test suite
	Slide 43: Evaluation: Performance
	Slide 44: Conclusion
	Slide 45: Conclusion
	Slide 46: The shell has more problems…
	Slide 47: Challenging aspects of the shell
	Slide 48: Our solutions
	Slide 49: Our infrastructure is an enabler
	Slide 50: Some exciting future directions
	Slide 51: Practical impact and availability
	Slide 52
	Slide 53: Backup slides
	Slide 54: Wait, we have to go through them!!!
	Slide 55
	Slide 56: Challenge: Arbitrary black-box commands
	Slide 57: Solution: Command Specification Framework
	Slide 58: Command Specs are shareable
	Slide 59: Command Spec Library
	Slide 60: Solution: Node Correspondence Framework
	Slide 61: Challenge: Shell Data Parallelism is Subtle
	Slide 62: Challenge: Shell Data Parallelism is Subtle
	Slide 63: Solution: Order-aware dataflow model
	Slide 64: Solution: Order-aware dataflow model
	Slide 65: Dependency Untangling
	Slide 66: Teaser: Distribution

