
Configurable Consistency

Konstantinos Kallas -- WPE 2 Presentation

Motivation

Consistency Notions
Replica 1

Replica 3
Replica 2

t1: deposit(5$)

t2: deposit(10$)

t3: balance() = ?

Replicated Datastore

t3: balance() = 15$

Linearizability

deposit(5$) deposit(10$) balance() = 15$

time

Replica 1

Replica 3
Replica 2

t1: deposit(5$)

t2: deposit(10$)

t3: balance() = 15$

Linearizability too strong?
Replica 1

Replica 3
Replica 2

t1: deposit(5$)

t2: deposit(10$)

Synchronization overhead ↑↑↑ Availability ↓↓↓

Eventual Consistency
Replica 1

Replica 3
Replica 2

t1: deposit(5$)

t2: deposit(10$)

t3: balance() = ?

 balance() = 0

 balance() = 5

 balance() = 10

 balance() = 15

Eventual Consistency too weak?
Replica 1

Replica 3
Replica 2

t1: withdraw(100$)

t1’: withdraw(100$)

t3: balance() = -100$

Initial balance: 100$
Invariant: balance >= 0

Why not both?
Replica 1

Replica 3
Replica 2

t1: deposit(200$)

t2: withdraw(100$)

t3: balance() = 100$

synchronize
synchronize

Initial balance: 0$
Invariant: balance >= 0

Configurable Consistency Notions

Talk Outline
I. Common Model

II. Configurable Consistency Notions:

A. RedBlue Consistency -- Li et al. -- OSDI 2012

B. Explicit Consistency -- Balegas et al. -- EuroSys 2015

C. Reasoning about Consistency -- Gotsman et al. -- POPL 2016

III. Comparison

IV. Future Work

Common Model

Model
Executions are partial orders (PO) of events:

Each event is an operation execution, e.g. balance() = 100$

Each replica sees a consistent serialization of the PO.

A consistency notion restricts the execution POs that can be observed.

All three papers support causal consistency as the weakest notion.

(i) RedBlue Consistency

Main Idea
Label operations as:

Red: Strong Consistency Blue: Weak Consistency

withdraw(x) deposit(x)

balance()

accrue_interest()

Also:

- Ensuring convergence
- Conditions for labelling operations

Model -- RedBlue Order

Model -- Causal Serializations

Model -- Example

Model -- RedBlue Consistency

State Convergence

Shadow Operations

deposit(amount):
 lambda balance:
 return (balance + amount)

accrue_interest():
 lambda balance:
 return (balance * 1.05)

deposit_gen(amount):
 lambda balance:
 return deposit_shadow(amount)

deposit_shadow(amount):
 lambda balance:
 return (balance + amount)

Addition with a constant
commutes with deposit

Instantly performed

accrue_interest_gen():
 lambda balance:
 return accrue_interest_shadow(balance)

accrue_interest_shadow(balance):
 lambda balance’:
 return (balance’ + balance * 0.05)

Invariant preservation

1. Label any pair of non-commutative ops Red

2. Label all non invariant-safe ops Red

3. Label all other ops Blue

Conditions

- Main Idea: Red and Blue operations

- Shadow operations to improve commutativity

- Conditions for labelling operations

Summary

Pros:

- Clean model

- Easy to use and configure

Cons:

- No automation

- Very coarse-grained

(ii) Explicit Consistency

Main Idea
Finer-grained control of synchronization using reservations

- Reservations are types of locks

- Reduce synchronization for specific invariants

Also:

- Static analysis to identify unsafe pairs of operations

Model -- Serializations

Model -- Explicit Consistency

Performing two withdraw(x) operations concurrently would lead to I-invalid serializations

Identifying unsafe operations

- User specifies invariant

- User writes postconditions for each operation

- Static analysis identifies and reports unsafe pairs

Invariant Specification

Some example invariants:

- Bounds: forall A, account(A) => balance(A) >= 0

- Uniqueness: forall A, account(A) => nrOwners(A) = 1

- Integrity: forall A, hasField(A, “balance”) => account(A)

Postconditions
Operations are uninterpreted by the static analysis.

Example operations and their postconditions:

- withdraw(A, x): decrements(balance(A), x)

- deposit(A, x): increments(balance(A), x)

- addAccount(A): true(account(A))

- removeAccount(A): false(account(A))

Static Analysis

- First finds all pairs of operations that produce contradicting effects

- Then for all other pairs query an SMT solver

- Reports pairs that are unsafe to execute concurrently

Handling unsafe operations

Two methods to handle unsafe operation pairs:

- Violation Repair (e.g. using CRDTs)

- Violation Avoidance (using reservations)

Reservations
Reservations are like locks.

There are several different types:

- Multi-level lock reservation

- Escrow reservation

- Multi-level mask reservation

- Partition lock reservation

Multi-level Lock Reservation
Their base lock mechanism:

- It refers to specific operations

- It allows for finer synchronization

Three types:

- Exclusive Allow (EA): Similar to labelling an operation Red

- Shared Allow (SA): Similar to EA, but many replicas can perform the op

- Shared Forbid (SF): Disallows any replica from performing an op

Multi-level Lock Reservation -- Example
Auction application with operations:

- place_bid
- close_auction
- query

With RedBlue:

- Red: place_bid, close_auction
- Blue: query

With Explicit Consistency:

- place_bid: SA, SF on close_auction
- close_auction: EA
- query: No lock

Invariant:

- Auction closes once
- Highest bid at close time wins

Escrow Reservation
- Useful for numeric bound invariants:

- For invariants x >= k

- and initial value of x = x0

- initial decrement rights: x0 - k

- Performing decrement(y) consumes y rights

- Replicas ask other replicas for rights to perform operations

- They have a technique for not “leaking” rights

- Main Idea: Reservations for fine grained synchronization

- Static analysis to identify unsafe operation pairs

Summary

Pros:

- Finer grain than other two

- Semi-automatic static analysis

Cons:

- Reservations not formalized

- Analysis requires manual effort

(iii) Reasoning about Consistency

Main Idea
Token system to model dependencies between operations.

close_auction place_bid

query_auction

close_auction place_bid

query_auction

Red

Blue

Model
Executions are partial orders of events:

Operation semantics:

where:

hb hb

Proving invariant preservation
We are given an invariant I over database states.

To show that invariant is preserved sequentially:

To show that invariant is preserved in general:

What about the tokens?

Too imprecise!

Generator

Guarantee relations

- Associate each token with a guarantee relation G(token)

- G(token) describes any state change that token can cause

- G0 relation of operations that don’t acquire any token

Guarantee relations -- Example
The standard banking example:

Has the following guarantee relations:

State Based Proof rule
Given invariant, there exist G for all tokens and G0:

Proof Rule Soundness

- They generalize the state based rule to refer to events

- They prove that:

- the event-based rule is sound

- the state-based rule is a specialization of it

- It follows that the state-based rule is sound

- Main idea: Conflict relation for fine grained synchronization control

- Sound proof rule that establishes invariant preservation

Summary

Pros:

- Finer grain than RedBlue

- Fully formalized

- Automatic

Cons:

- Guarantee relation manual

- Less general than Explicit

Conclusion

Qualitative Comparison
Formalization

Expressiveness

Automation

Implementation

RedBlue

Explicit

Hybrid

- Better Automation/Reduced user input

- More expressive correctness conditions

- Dropping the causality assumption

- Hybrid Consistency Data Types

Future Work

