Configurable Consistency

Konstantinos Kallas -- WPE 2 Presentation

Motivation

Consistency Notions

Replica 1

t2: deposit(10$)

>

Replica 3
Replica 2

t3: balance() = ?

<

t1: deposit(5$)

>

Replicated Datastore

Linearizability

Replica 1

t2: deposit(10$)

>

Replica 3

Replica 2
t3: balance() = 15$

<

t1: deposit(5$)

>

time

deposit(5$) deposit(10$) balance() = 15$%

Linearizability too strong?

Replica 1

t2: deposit(10$)

>

Replica 3
Replica 2

t3: balance() = 15$

—

. ; _—_— -
t1: deposit(5$) -
-_—

>

Synchronization overhead 111 Availability |]|

Eventual Consistency

t2: deposit(10$)

>

Replica 2

t1: deposit(5$)

>

Replica 1

Replica 3

t3: balance() = ?
balance() = 0
balance() = 5
balance() = 10

balance()

15

Eventual Consistency too weak?

Initial balance: 100$ Replica 1
Invariant: balance >= 0

t1’: withdraw(100$)

>

Replica 3
Replica 2

t3: balance() = -100%

<

t1: withdraw(100%)

>

Why not both?

Initial balance: 0$ Replica 1
Invariant: balance >= 0

t2: withdraw(100$%)

>

synchronizy

Replica 2

whronize
Replica 3

t3: balance() = 1005

tl: deposit(200$) h

>

Configurable Consistency Notions

Talk Outline

. Common Mode|
ll. Configurable Consistency Notions:
A. RedBlue Consistency -- Li et al. -- OSDI 2012
B. Explicit Consistency -- Balegas et al. -- EuroSys 2015
C. Reasoning about Consistency -- Gotsman et al. -- POPL 2016
Ill. Comparison
V. Future Work

Common Model

Model

Executions are partial orders (PO) of events:

Each event is an operation execution, €.g. balance() = 100%
Each replica sees a consistent serialization of the PO.
A consistency notion restricts the execution POs that can be observed.

All three papers support causal consistency as the weakest notion.

(i) RedBlue Consistency

Main Idead

Label operations as:

Red: Strong Consistency Blue: Weak Consistency
withdraw(x) deposit(x)
balance()

accrue_1interest()

Also:

- Ensuring convergence
- Conditions for labelling operations

Model -- RedBlue Order

Definition 1 (RedBlue order) Given a set of operations U = RU B, where R and
B denote the red and blue operation set, respectively, and RN B = (), a RedBlue order

is a partial order O = (U, <) with the restriction that Yu,v € R such that u # v, u < v

or v < u (i.e., red operations are totally ordered).

Model -- Causal Serializations

Definition 3 (Causal legal serialization) Given a site i, O; = (U, <) is an i-causal

legal serialization (or short, a causal serialization) of RedBlue order O = (U, <) if
e O; 1s a legal serialization of O, and

e for any two operations u,v € U, if site(v) =i and u < v in O;, then u < v.

Model -- Example

Alice in EU Bob in US
Alice in EU Bob in US Aa A by
S_I S!'
A ar . A b.’ A 17'1 A a
" Yo w g 5 v
.......) S_Z S_Z‘
R 3 ¥ * b2 * b2
v X b, v .
........... 7 Ss S’
A a, > (IR . N a A b;
X S:t S;‘
v A 93 * a; A a
* a . ;. M
B ¥ vcunyg, . ; S5 S5'
"""") 2 \ 4 A 17'3 * a;
v
* ’)4 5:6 So'
(a) RedBlue order O of operations * I? * by
S; S

(b) Causal serializations of O

Model -- RedBlue Consistency

Definition 3 (RedBlue consistency). A replicated system
is O-RedBlue consistent (or short, RedBlue consistent) if
each site i applies operations according to an i-causal
serialization of RedBlue order O.

State Convergence

Alice in EU Bob in US
A\ deposit(20) A\ accrueinterest()
(a) RedBlue order O of operations issued by Alice and Bob

Alice in EU Bob in US
balan_ce:l 00 balam.:e:l 00
A depos'it(20) A accruei:zterest()
balan?e:l 20 balam-:e:l 05
/\ accrueinterest() A deposit(20)
balan::e:l 26 ¢ balan::e:125

(b) Causal serializations of O leading to diverged state

Shadow Operations

Instantly performed

deposit_gen(amount):

deposit(amount): lambda balance:
lambda balance: return deposit_shadow(amount)

return (balance + amount)
deposit_shadow(amount):

accrue_interest(): lambda balance:
lambda balance: return (balance + amount)

return (balance * 1.05)

accrue_1interest_gen():
lambda balance:
return accrue_1interest_shadow(balance)

accrue_interest_shadow(balance):
lambda balance’:

. . //////,,,///" return (balance’ + balance * 0.05)
Addition with a constant
commutes with deposit

Invariant preservation

Definition 7 (Invariant safe). Shadow operation h,(S) is

invariant safe if for all valid states S and S', the state
S"+ hy,(S) is also valid.

Conditions

1. Label any pair of non-commutative ops Red
2. Label all non invariant-safe ops Red

3. Label all other ops Blue

Summary

- Main |dea: Red and Blue operations
- Shadow operations to improve commutativity

- Conditions for labelling operations

Pros: cons:;

- Clean model - No automation

- Easy to use and configure - Very coarse-grained

(i) Explicit Consistency

Main Idead

Finer-grained control of synchronization using reservations

- Reservations are types of locks

- Reduce synchronization for specific invariants
Also:

- Static analysis to identify unsafe pairs of operations

Model -- Serializations

Definition 2.1 (/-valid serialization). Given a set of trans-
actions 7" and 1ts associated happens-before partial order <,
O; = (T, <) is an [-valid serialization of O = (T, <) if O;
is a valid serialization of O, and I holds in every state that
results from executing some prefix of O;.

Model -- Explicit Consistency

Definition 2.2 (Explicit consistency). A system provides
Explicit Consistency if all serializations of O = (T, <)
are [-valid serializations, where 7' 1s the set of transactions
executed 1n the system and < their associated partial order.

Performing two withdraw(x) operations concurrently would lead to I-invalid serializations

l|dentifying unsafe operations

- User specifies invariant
- User writes postconditions for each operation

- Static analysis identifies and reports unsafe pairs

Invariant Specification

Some example invariants:

- Bounds: forall A, account(A) => balance(A) >= 0
- Unigqueness: forall A, account(A) => nrOwners(A) =1

- Integrity: forall A, hasField(A, “balance™) => account(A)

Postconditions

Operations are uninterpreted by the static analysis.

Example operations and their postconditions:

withdraw(A, x): decrements(balance(A), x)

deposit(A, x): increments(balance(A), x)

addAccount(A): true(account(A))

removeAccount(A): false(account(A))

Static Analysis

- First finds all pairs of operations that produce contradicting effects
- Then for all other pairs query an SMT solver

- Reports pairs that are unsafe to execute concurrently

Handling unsafe operations

Two methods to handle unsafe operation pairs:

/

- Violation Repair (e.g. using CRDTs)

- Violation Avoidance (using reservations)

Reservations

Reservations are like locks.

There are several different types:

. . ‘
- Multi-level lock reservation
. ‘
- Escrow reservation

- Multi-level mask reservation

- Partition lock reservation

Multi-level Lock Reservation

Their base lock mechanism:

- It refers to specific operations

- It allows for finer synchronization
Three types:

- Exclusive Allow (EA): Similar to labelling an operation Red
- Shared Allow (SA): Similar to EA, but many replicas can perform the op

- Shared Forbid (SF): Disallows any replica from performing an op

Multi-level Lock Reservation -- Example

Auction application with operations: Invariant:

- place_bid - Auction closes once

- close_auction - Highest bid at close time wins

- query

With RedBlue: With Explicit Consistencuy:
- Red: place_bid, close_auction - place_bid: SA, SF on close__auction
- Blue: query - close_auction: EA

- query: No lock

Escrow Reservation

Useful for numeric bound invariants:

For invariants x >= k

- and initial value of x = x0

- initial decrement rights: x0O - k

Performing decrement(y) consumes y rights

Replicas ask other replicas for rights to perform operations

They have a technique for not “leaking” rights

Summary

- Main Idea: Reservations for fine grained synchronization

- Static analysis to identify unsafe operation pairs

Pros: cons:;

- Finer grain than other two - Reservations not formalized

- Semi-automatic static analysis - Analysis requires manual effort

(iii) Reasoning about Consistency

Main Idead

Token system7 = (Token,), to model dependencies between operations.

Red

@oucnon H place_bid 1 q?se_ouction H ploceﬂ

query_auction } [query_auction }

Blue

Model

Executions are partial orders of events:

gfﬁ«é%;@
Operation semantics:

Vo, 0. Fo(0) = (Fo(0), Fs' (), Fo(o)).
where:
Fi*(o) € P(Token)

Ve, f € E. tok(e) X tok(f) = (e = fV f 2 e).

Proving invariant preservation

We are given an invariant | over database states.
Generator

To show that invariant is preserved sequentially:

Too imprecise!

To show that invariant is preserved in general:
/
Vo,0'. (o,0' € I = Fo'(0)(o") € I).

What about the tokens?

Guarantee relations

- Associate each token with a guarantee relation G(token)
- G(token) describes any state change that token can cause

- GO relation of operations that don’t acquire any token

Guarantee relations -- Example

The standard banking example:

Faeposit(a) (@) = (L, (Ao’.0" + a),0)
]:mterest(o') — (()\O-, o’ + 0.05 * O'), ®)
Fauery(0) = (0, skip, (/))
Fuithdraw(a) (0) = if 0 > athen (v', (Ao’. 0" —a),{7})

else (X, skip, {7})

Has the following guarantee relations:

G(1) ={(0,0") |0 <
Go={(0,0") |0 <

State Based Proof rule

Given invariant, there exist G for all tokens and GO:;

S1. Oinit € I

S2.Go(I) CIAVYT. G(T)(I) C I

S3.Vo,0,0". (6 € I A (0,0") € (Go UG((F*(5))))*)
— (¢/, F"(0)(0")) € Go U G(F*(0))

Exec(T,F) C eval ' (1)

Proof Rule Soundness

- They generalize the state based rule to refer to events
- They prove that:

- the event-based rule is sound

- the state-based rule is a specialization of it

- |t follows that the state-based rule is sound

Summary

- Main idea: Conflict relation for fine grained synchronization control

- Sound proof rule that establishes invariant preservation

Pros: Cons:
- Finer grain than RedBlue - Guarantee relation manual
- Fully formalized - Less general than Explicit

- Automatic

Conclusion

Qualitative Comparison

Formalization
oY

v

Expressiveness «

Automation

RedBlue O—
Explicit 7x
Hybrid 1]

Implementation

Future Work

- Better Automation/Reduced user input
- More expressive correctness conditions
- Dropping the causality assumption

- Hybrid Consistency Data Types

