Configurable Consistency

Konstantinos Kallas -- WPE 2 Presentation
Motivation
Consistency Notions

Replicated Datastore

Replica 1

Replica 2

Replica 3

t_1: deposit(5$)

t_2: deposit(10$)

t_3: balance() = ?
Linearizability

$t_1: \text{deposit}(5\$)$

$t_2: \text{deposit}(10\$)$

$t_3: \text{balance()} = 15\$

Replica 1

Replica 2

Replica 3

Time

deposit(5\$) deposit(10\$) balance() = 15\$
Linearizability too strong?

Synchronization overhead ↑↑↑

Availability ↓↓↓
Eventual Consistency

Replica 1

Replica 2

Replica 3

\[t_1: \text{deposit}(5\$) \]
\[t_2: \text{deposit}(10\$) \]
\[t_3: \text{balance}() = ? \]

balance() = 0
balance() = 5
balance() = 10
balance() = 15
Eventual Consistency too weak?

Initial balance: 100$
Invariant: balance >= 0

t1: withdraw(100$)
t1': withdraw(100$)

t3: balance() = -100$
Why not both?

Initial balance: 0$
Invariant: balance >= 0

t1: deposit(200$)

t2: withdraw(100$)
synchronize

Replica 1

Replica 2

Replica 3

t3: balance() = 100$
Configurable Consistency Notions
Talk Outline

I. Common Model
II. Configurable Consistency Notions:
 A. RedBlue Consistency -- Li et al. -- OSDI 2012
 B. Explicit Consistency -- Balegas et al. -- EuroSys 2015
 C. Reasoning about Consistency -- Gotsman et al. -- POPL 2016
III. Comparison
IV. Future Work
Common Model
Model

Executions are partial orders (PO) of events:

Each event is an operation execution, e.g. \(\text{balance()} = 100\$ \)

Each replica sees a consistent serialization of the PO.

A consistency notion restricts the execution POs that can be observed.

All three papers support causal consistency as the weakest notion.
(i) RedBlue Consistency
Main Idea

Label operations as:

Red: Strong Consistency
withdraw(x)

Blue: Weak Consistency
deposit(x)
balance()
accrue_interest()

Also:
- Ensuring convergence
- Conditions for labelling operations
Model -- RedBlue Order

Definition 1 (RedBlue order) Given a set of operations $U = R \cup B$, where R and B denote the red and blue operation set, respectively, and $R \cap B = \emptyset$, a RedBlue order is a partial order $O = (U, \prec)$ with the restriction that $\forall u, v \in R$ such that $u \neq v$, $u \prec v$ or $v \prec u$ (i.e., red operations are totally ordered).
Model -- Causal Serializations

Definition 3 (Causal legal serialization) Given a site i, $O_i = (U, \prec)$ is an i-causal legal serialization (or short, a causal serialization) of RedBlue order $O = (U, \prec)$ if

- O_i is a legal serialization of O, and

- for any two operations $u, v \in U$, if site$(v) = i$ and $u \prec v$ in O_i, then $u \prec v$.
Model -- Example

(a) RedBlue order O of operations

(b) Causal serializations of O
Model -- RedBlue Consistency

Definition 3 (RedBlue consistency). A replicated system is O-RedBlue consistent (or short, RedBlue consistent) if each site i applies operations according to an i-causal serialization of RedBlue order O.
State Convergence

(a) RedBlue order O of operations issued by Alice and Bob

(b) Causal serializations of O leading to diverged state

Alice in EU

△ deposit(20)

△ accrueinterest()

balance:100

△ deposit(20)

balance:120

△ accrueinterest()

balance:126

Bob in US

△ accrueinterest()

balance:100

△ accrueinterest()

balance:105

△ deposit(20)

balance:125

≠
Shadow Operations

deposit(amount):
 lambda balance:
 return (balance + amount)

accrue_interest():
 lambda balance:
 return (balance * 1.05)

addition with a constant commutes with deposit

deposit_gen(amount):
 lambda balance:
 return deposit_shadow(amount)

deposit_shadow(amount):
 lambda balance:
 return (balance + amount)

accrue_interest_gen():
 lambda balance:
 return accrue_interest_shadow(balance)

accrue_interest_shadow(balance):
 lambda balance’:
 return (balance’ + balance * 0.05)

Instantly performed
Invariant preservation

Definition 7 (Invariant safe). Shadow operation $h_u(S)$ is invariant safe if for all valid states S and S', the state $S' + h_u(S)$ is also valid.
Conditions

1. Label any pair of non-commutative ops **Red**
2. Label all non invariant-safe ops **Red**
3. Label all other ops **Blue**
Summary

- Main Idea: Red and Blue operations
- Shadow operations to improve commutativity
- Conditions for labelling operations

Pros:
- Clean model
- Easy to use and configure

Cons:
- No automation
- Very coarse-grained
(ii) Explicit Consistency
Main Idea

Finer-grained control of synchronization using reservations

- Reservations are types of locks
- Reduce synchronization for specific invariants

Also:

- Static analysis to identify unsafe pairs of operations
Model -- Serializations

Definition 2.1 (*I*-valid serialization). Given a set of transactions T and its associated happens-before partial order \prec, $O_i = (T, \prec)$ is an *I*-valid serialization of $O = (T, \prec)$ if O_i is a valid serialization of O, and I holds in every state that results from executing some prefix of O_i.
Model -- Explicit Consistency

Definition 2.2 (Explicit consistency). A system provides Explicit Consistency if all serializations of $O = (T, \prec)$ are I-valid serializations, where T is the set of transactions executed in the system and \prec their associated partial order.

Performing two withdraw(x) operations concurrently would lead to I-invalid serializations.
Identifying unsafe operations

- User specifies invariant
- User writes postconditions for each operation
- Static analysis identifies and reports unsafe pairs
Invariant Specification

Some example invariants:

- **Bounds**: forall A, account(A) => balance(A) >= 0
- **Uniqueness**: forall A, account(A) => nrOwners(A) = 1
- **Integrity**: forall A, hasField(A, “balance”) => account(A)
Postconditions

Operations are uninterpreted by the static analysis.

Example operations and their postconditions:

- `withdraw(A, x): decrements(balance(A), x)`
- `deposit(A, x): increments(balance(A), x)`
- `addAccount(A): true(account(A))`
- `removeAccount(A): false(account(A))`
Static Analysis

- First finds all pairs of operations that produce contradicting effects
- Then for all other pairs query an SMT solver
- Reports pairs that are unsafe to execute concurrently
Handling unsafe operations

Two methods to handle unsafe operation pairs:

- Violation Repair (e.g. using CRDTs)
- Violation Avoidance (using reservations)
Reservations

Reservations are like locks.

There are several different types:

- Multi-level lock reservation
- Escrow reservation
- Multi-level mask reservation
- Partition lock reservation
Multi-level Lock Reservation

Their base lock mechanism:

- It refers to specific operations
- It allows for finer synchronization

Three types:

- Exclusive Allow (EA): Similar to labelling an operation **Red**
- Shared Allow (SA): Similar to EA, but many replicas can perform the op
- Shared Forbid (SF): Disallows any replica from performing an op
Multi-level Lock Reservation -- Example

Auction application with operations:

- place_bid
- close_auction
- query

Invariant:

- Auction closes once
- Highest bid at close time wins

With RedBlue:

- **Red**: place_bid, close_auction
- **Blue**: query

With Explicit Consistency:

- place_bid: SA, SF on close_auction
- close_auction: EA
- query: No lock
Escrow Reservation

- Useful for numeric bound invariants:
- For invariants $x \geq k$
 - and initial value of $x = x_0$
 - initial decrement rights: $x_0 - k$
- Performing decrement(y) consumes y rights
- Replicas ask other replicas for rights to perform operations
- They have a technique for not “leaking” rights
Summary

- Main Idea: Reservations for fine grained synchronization
- Static analysis to identify unsafe operation pairs

Pros:
- Finer grain than other two
- Semi-automatic static analysis

Cons:
- Reservations not formalized
- Analysis requires manual effort
(iii) Reasoning about Consistency
Main Idea

Token system $\mathcal{T} = (\text{Token}, \Join)$, to model dependencies between operations.
Model

Executions are partial orders of events:

\[
\forall o, \sigma. \mathcal{F}_o(\sigma) = (\mathcal{F}_o^{val}(\sigma), \mathcal{F}_o^{eff}(\sigma), \mathcal{F}_o^{tok}(\sigma)).
\]

where:

\[
\mathcal{F}_o^{tok}(\sigma) \in \mathcal{P}(\text{Token})
\]

\[
\forall e, f \in E. \text{tok}(e) \triangleright \text{tok}(f) \implies (e \xrightarrow{\text{hb}} f \lor f \xrightarrow{\text{hb}} e).
\]
Proving invariant preservation

We are given an invariant I over database states.

To show that invariant is preserved sequentially:

$$\forall \sigma. (\sigma \in I \implies F^\text{eff}_o (\sigma)(\sigma) \in I).$$

To show that invariant is preserved in general:

$$\forall \sigma, \sigma'. (\sigma, \sigma' \in I \implies F^\text{eff}_o (\sigma)(\sigma') \in I).$$

What about the tokens?
Guarantee relations

- Associate each token with a guarantee relation $G(\text{token})$
- $G(\text{token})$ describes any state change that token can cause
- G_0 relation of operations that don’t acquire any token
Guarantee relations -- Example

The standard banking example:

\[F_{\text{deposit}}(a)(\sigma) = (\bot, (\lambda \sigma'. \sigma' + a), \emptyset) \]
\[F_{\text{interest}}(\sigma) = (\bot, (\lambda \sigma'. \sigma' + 0.05 * \sigma), \emptyset) \]
\[F_{\text{query}}(\sigma) = (\sigma, \text{skip}, \emptyset) \]
\[F_{\text{withdraw}}(a)(\sigma) = \text{if } \sigma \geq a \text{ then } (\checkmark, (\lambda \sigma'. \sigma' - a), \{\tau\}) \]
\[\text{else } (\times, \text{skip}, \{\tau\}) \]

Has the following guarantee relations:

\[G(\tau) = \{(\sigma, \sigma') | 0 \leq \sigma' < \sigma\}; \]
\[G_0 = \{(\sigma, \sigma') | 0 \leq \sigma \leq \sigma'\}. \]
State Based Proof rule

Given invariant, there exist G for all tokens and G_0:

$\begin{align*}
S1. \quad & \sigma_{\text{init}} \in I \\
S2. \quad & G_0(I) \subseteq I \land \forall \tau. \ G(\tau)(I) \subseteq I \\
S3. \quad & \forall o, \sigma, \sigma'. \ (\sigma \in I \land (\sigma, \sigma') \in (G_0 \cup G((F^\text{tok}_o(\sigma))^\perp))^*) \\
& \implies (\sigma', F^\text{eff}_o(\sigma)(\sigma')) \in G_0 \cup G(F^\text{tok}_o(\sigma)) \\
& \text{Exec}(\mathcal{T}, \mathcal{F}) \subseteq \text{eval}_F^{-1}(I)
\end{align*}$
Proof Rule Soundness

- They generalize the state based rule to refer to events
- They prove that:
 - the event-based rule is sound
 - the state-based rule is a specialization of it
- It follows that the state-based rule is sound
Summary

- Main idea: Conflict relation for fine grained synchronization control
- Sound proof rule that establishes invariant preservation

Pros:
- Finer grain than RedBlue
- Fully formalized
- Automatic

Cons:
- Guarantee relation manual
- Less general than Explicit
Conclusion
Qualitative Comparison

Formalization

Expressiveness

Automation

Implementation

RedBlue
Explicit
Hybrid
Future Work

- Better Automation/Reduced user input
- More expressive correctness conditions
- Dropping the causality assumption
- Hybrid Consistency Data Types